Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Jul;123(1):212–221. doi: 10.1128/jb.123.1.212-221.1975

Lambda bacteriophage gene produces and X-ray sensitivity of Escherichia coli: comparison of red-dependent and gam-dependent radioresistance.

Z Trogovcević, W D Rupp
PMCID: PMC235709  PMID: 1095552

Abstract

When gene products of lambda bacteriophage are introduced into a cell by transient induction of a lysogen, increased resistance of the cells to X rays results. This phenomenon has been called phage-induced radioresistance. Genetic studies show at least two classes of induced radioresistance. The first type depends on the products of the lambda red genes and is observed in bacteria that are mutated in the recB gene. It is thought that the lambda red products compensate for the missing RecBC nuclease in the repair of X-ray damage. An optimal effect is obtained even when the lambda red products are supplied 1 h after irradiation. The lesions that are affected by the red-dependent process are probably not deoxyribonucleic acid strand breaks because the extent of deoxyribonucleic acid strand rejoining is not altered by the red products. The second type of phage-induced radioresistance requires the gam product of lambda and is observed in wild-type and polA strains. The lambda gam+ gene produce must be present immediately after irradiation to exert its full effect. In its presence, DNA breakdown is decreased, and a greater fraction of DNA is converted back to high molecular weight. Strains carrying lex, recA, or certain other combinations of mutations do not show any detectable phage-induced radioresistance.

Full text

PDF
217

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbour S. D., Nagaishi H., Templin A., Clark A. J. Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec+ revertants caused by indirect suppression of rec- mutations. Proc Natl Acad Sci U S A. 1970 Sep;67(1):128–135. doi: 10.1073/pnas.67.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clark A. J. Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet. 1973;7:67–86. doi: 10.1146/annurev.ge.07.120173.000435. [DOI] [PubMed] [Google Scholar]
  3. De Lucia P., Cairns J. Isolation of an E. coli strain with a mutation affecting DNA polymerase. Nature. 1969 Dec 20;224(5225):1164–1166. doi: 10.1038/2241164a0. [DOI] [PubMed] [Google Scholar]
  4. Frampton E. W., Billen D. X-ray-induced degradation of deoxyribonucleic acid in a polyauxotrophic bacterium. Radiat Res. 1966 May;28(1):109–120. [PubMed] [Google Scholar]
  5. Gross J., Gross M. Genetic analysis of an E. coli strain with a mutation affecting DNA polymerase. Nature. 1969 Dec 20;224(5225):1166–1168. doi: 10.1038/2241166a0. [DOI] [PubMed] [Google Scholar]
  6. Horii Z., Clark A. J. Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol. 1973 Oct 25;80(2):327–344. doi: 10.1016/0022-2836(73)90176-9. [DOI] [PubMed] [Google Scholar]
  7. Howard-Flanders P., Boyce R. P. DNA repair and genetic recombination: studies on mutants of Escherichia coli defective in these processes. Radiat Res. 1966;(Suppl):156+–156+. [PubMed] [Google Scholar]
  8. Howard-Flanders P., Theriot L. Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics. 1966 Jun;53(6):1137–1150. doi: 10.1093/genetics/53.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KORN D., WEISSBACH A. THE EFFECT OF LYSOGENIC INDUCTION ON THE DEOXYRIBONUCLEASES OF ESCHERICHIA COLI K12-LAMBDA. I. APPEARANCE OF A NEW EXONUCLEASE ACTIVITY. J Biol Chem. 1963 Oct;238:3390–3394. [PubMed] [Google Scholar]
  10. Kapp D. S., Smith K. C. Repair of radiation-induced damage in Escherichia coli. II. Effect of rec and uvr mutations on radiosensitivity, and repair of x-ray-induced single-strand breaks in deoxyribonucleic acid. J Bacteriol. 1970 Jul;103(1):49–54. doi: 10.1128/jb.103.1.49-54.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kushner S. R., Nagaishi H., Clark A. J. Indirect suppression of recB and recC mutations by exonuclease I deficiency. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1366–1370. doi: 10.1073/pnas.69.6.1366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kushner S. R., Nagaishi H., Clark A. J. Isolation of exonuclease VIII: the enzyme associated with sbcA indirect suppressor. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3593–3597. doi: 10.1073/pnas.71.9.3593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kushner S. R., Nagaishi H., Templin A., Clark A. J. Genetic recombination in Escherichia coli: the role of exonuclease I. Proc Natl Acad Sci U S A. 1971 Apr;68(4):824–827. doi: 10.1073/pnas.68.4.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lehman I. R., Chien J. R. Persistence of deoxyribonucleic acid polymerase I and its 5'--3' exonuclease activity in PolA mutants of Escherichia coli K12. J Biol Chem. 1973 Nov 25;248(22):7717–7723. [PubMed] [Google Scholar]
  15. Monk M., Kinross J. Conditional lethality of recA and recB derivatives of a strain of Escherichia coli K-12 with a temperature-sensitive deoxyribonucleic acid polymerase I. J Bacteriol. 1972 Mar;109(3):971–978. doi: 10.1128/jb.109.3.971-978.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mount D. W. Isolation and genetic analysis of a strain of Escherichia coli K-12 with an amber recA mutation. J Bacteriol. 1971 Jul;107(1):388–389. doi: 10.1128/jb.107.1.388-389.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mount D. W., Low K. B., Edmiston S. J. Dominant mutations (lex) in Escherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet lght-induced mutations. J Bacteriol. 1972 Nov;112(2):886–893. doi: 10.1128/jb.112.2.886-893.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pollard E., Swez J., Grady L. Physical characteristics of the residual DNA in bacterial cells after degradation due to ionizing radiation. Radiat Res. 1966 Jul;28(3):585–596. [PubMed] [Google Scholar]
  19. Radding C. M., Shreffler D. C. Regulation of lambda exonuclease. II. Joint regulation of exonuclease and a new lambda antigen. J Mol Biol. 1966 Jul;18(2):251–261. doi: 10.1016/s0022-2836(66)80244-9. [DOI] [PubMed] [Google Scholar]
  20. Radding C. M. The role of exonuclease and beta protein of bacteriophage lambda in genetic recombination. I. Effects of red mutants on protein structure. J Mol Biol. 1970 Sep 28;52(3):491–499. doi: 10.1016/0022-2836(70)90415-8. [DOI] [PubMed] [Google Scholar]
  21. Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. doi: 10.1016/0022-2836(68)90445-2. [DOI] [PubMed] [Google Scholar]
  22. SUSSMAN R., JACOB F. [On a thermosensitive repression system in the Escherichia coli lambda bacteriophage]. C R Hebd Seances Acad Sci. 1962 Feb 19;254:1517–1519. [PubMed] [Google Scholar]
  23. Sakaki Y., Karu A. E., Linn S., Echols H. Purification and properties of the gamma-protein specified by bacteriophage lambda: an inhibitor of the host RecBC recombination enzyme. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2215–2219. doi: 10.1073/pnas.70.8.2215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shulman M. J., Hallick L. M., Echols H., Signer E. R. Properties of recombination-deficient mutants of bacteriophage lambda. J Mol Biol. 1970 Sep 28;52(3):501–520. doi: 10.1016/0022-2836(70)90416-x. [DOI] [PubMed] [Google Scholar]
  25. Trgovcević Z., Petranović D., Zgaga V. Phage-induced radioresistance of lysogenic bacteria. Biochem Biophys Res Commun. 1971 May 7;43(3):688–693. doi: 10.1016/0006-291x(71)90669-3. [DOI] [PubMed] [Google Scholar]
  26. Trgovcević Z., Rupp W. D. Interaction of bacterial and lambda phage recombination systems in the x-ray sensitivity of Escherichia coli K-12. Proc Natl Acad Sci U S A. 1974 Feb;71(2):503–506. doi: 10.1073/pnas.71.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Unger R. C., Clark A. J. Interaction of the recombination pathways of bacteriophage lambda and its host Escherichia coli K12: effects on exonuclease V activity. J Mol Biol. 1972 Oct 14;70(3):539–548. doi: 10.1016/0022-2836(72)90558-x. [DOI] [PubMed] [Google Scholar]
  28. Unger R. C., Echols H., Clark A. J. Interaction of the recombination pathways of bacteriophage lambda and host Escherichia coli: effects on lambda recombination. J Mol Biol. 1972 Oct 14;70(3):531–537. doi: 10.1016/0022-2836(72)90557-8. [DOI] [PubMed] [Google Scholar]
  29. Yajko D. M., Valentine M. C., Weiss B. Mutants of Escherichia coli with altered deoxyribonucleases. II. Isolation and characterization of mutants for exonuclease I. J Mol Biol. 1974 May 15;85(2):323–343. doi: 10.1016/0022-2836(74)90367-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES