Abstract
Pseudomonas fluorescens W uses maltose exclusively by hydrolyzing it to glucose via an inducible alpha-glucosidase (alpha-D-glucoside glucohydrolase, EC 3.2.1.20). No evidence for phosphorolytic cleavage or oxidation to maltobionic acid was found in this organism. The alpha-glucosidase was totally intracellular and was most active at pH of 7.0. Induction occurred when cells were incubated with maltotriose or maltose. Induction was rapid and easily detectable within the first 5 min after the addition of the inducer. Glucose and its derivatives did not repress induction. Cells growing on DL-alanine or succinate plus maltose exhibited lower levels of alpha-glucosidase than those grown on maltose alone or maltose plus glucose. Induction required both messenger ribonucleic acid and protein synthesis.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENTLEY R., SLECHTA L. Oxidation of mono- and disaccharides to aldonic acids by Pseudomonas species. J Bacteriol. 1960 Mar;79:346–355. doi: 10.1128/jb.79.3.346-355.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERNAERTS M. J., DE LEY J. Microbiological formation and preparation of 3-ketoglycosides from disaccharides. J Gen Microbiol. 1960 Feb;22:129–136. doi: 10.1099/00221287-22-1-129. [DOI] [PubMed] [Google Scholar]
- Eisenberg R. C., Butters S. J., Quay S. C., Friedman S. B. Glucose uptake and phosphorylation in Pseudomonas fluorescens. J Bacteriol. 1974 Oct;120(1):147–153. doi: 10.1128/jb.120.1.147-153.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson R. P., Steers E., Jr Comparative study of isoenzyme formation of bacterial beta-galactosidase. J Bacteriol. 1970 Apr;102(1):79–84. doi: 10.1128/jb.102.1.79-84.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FITTING C., SCHERP H. W. Observations on a strain of Neisseria meningitidis in the presence of glucose and maltose. III. Cell-free extracts and the phosphorolysis of maltose. J Bacteriol. 1952 Sep;64(3):287–298. doi: 10.1128/jb.64.3.287-298.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamilton P. B., Sheeley G. Chemotactic response to amino acids by Pseudomonas aeruginosa in a semisolid nitrate medium. J Bacteriol. 1971 Oct;108(1):596–598. doi: 10.1128/jb.108.1.596-598.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han Y. W., Srinivasan V. R. Purification and characterization of beta-glucosidase of Alcaligenes faecalis. J Bacteriol. 1969 Dec;100(3):1355–1363. doi: 10.1128/jb.100.3.1355-1363.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hylemon P. B., Phibbs P. V., Jr Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa. Biochem Biophys Res Commun. 1972 Sep 5;48(5):1041–1048. doi: 10.1016/0006-291x(72)90813-3. [DOI] [PubMed] [Google Scholar]
- KATZNELSON H., TANENBAUM S. W. Observations on maltose oxidation by Acetobacter melanogenum. J Bacteriol. 1954 Sep;68(3):368–372. doi: 10.1128/jb.68.3.368-372.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kusch M., Wilson T. H. Defective lactose utilization by a mutant of Escherichia coli energy-uncoupled for lactose transport. The advantages of active transport versus facilitated diffusion. Biochim Biophys Acta. 1973 Jun 7;311(1):109–122. doi: 10.1016/0005-2736(73)90259-9. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Loomis W. F., Jr, Magasanik B. Nature of the effector of catabolite repression of beta-galactosidase in Escherichia coli. J Bacteriol. 1966 Jul;92(1):170–177. doi: 10.1128/jb.92.1.170-177.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAKADA D., MAGASANIK B. Catabolite repression and the induction of beta-galactosidase. Biochim Biophys Acta. 1962 Nov 26;61:835–837. doi: 10.1016/0926-6550(62)90070-1. [DOI] [PubMed] [Google Scholar]
- PARDEE A. B., PRESTIDGE L. S. The initial kinetics of enzyme induction. Biochim Biophys Acta. 1961 Apr 29;49:77–88. doi: 10.1016/0006-3002(61)90871-x. [DOI] [PubMed] [Google Scholar]
- Phibbs P. V., Jr, Eagon R. G. Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa. Arch Biochem Biophys. 1970 Jun;138(2):470–482. doi: 10.1016/0003-9861(70)90371-1. [DOI] [PubMed] [Google Scholar]
- Romano A. H., Eberhard S. J., Dingle S. L., McDowell T. D. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria. J Bacteriol. 1970 Nov;104(2):808–813. doi: 10.1128/jb.104.2.808-813.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz M., Hofnung M. La maltodextrine phosphorylase d'Escherichia coli. Eur J Biochem. 1967 Sep;2(2):132–145. doi: 10.1111/j.1432-1033.1967.tb00117.x. [DOI] [PubMed] [Google Scholar]
- Tiwari N. P., Campbell J. J. Enzymatic control of the metabolic activity of Pseudomonas aeruginosa grown in glucose or succinate media. Biochim Biophys Acta. 1969 Dec 30;192(3):395–401. doi: 10.1016/0304-4165(69)90388-2. [DOI] [PubMed] [Google Scholar]
- Tyler B., Loomis W. F., Jr, Magasanik B. Transient repression of the lac operon. J Bacteriol. 1967 Dec;94(6):2001–2011. doi: 10.1128/jb.94.6.2001-2011.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whiteside T. L., Corpe W. A. Extracellular enzymes produced by a Pseudomonas sp. and their effect on cell envelopes of Chromobacterium violaceum. Can J Microbiol. 1969 Jan;15(1):81–92. doi: 10.1139/m69-013. [DOI] [PubMed] [Google Scholar]
- Winters H., Corpe W. A. Polyacrylamide gel electrophoresis of exoenzymes produced by Pseudomonas fluorescens strain W. Can J Microbiol. 1971 Feb;17(2):241–248. doi: 10.1139/m71-041. [DOI] [PubMed] [Google Scholar]