Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Dec;124(3):1630–1634. doi: 10.1128/jb.124.3.1630-1634.1975

Transfectability of rough strains of Salmonella typhimurium.

H Bursztyn, V Sgaramella, O Ciferri, J Lederberg
PMCID: PMC236087  PMID: 1104596

Abstract

Cells of rough (but not smooth) strains of Salmonella typhimurium become competent for transfection by phage P22 deoxyribonucleic acid after treatment with 0.1 M CaCl2. The yield of infectious centers is about 10(-8) per genome equivalent of deoxyribonucleic acid. However, different sorts of rough strains vary in their ability to become competent in a fashion that can be correlated with the level of the genetic block in cell wall lipopolysaccharide synthesis. The most amenable strains are blocked by defects in the addition of galactose units I and II of the lipopolysaccharide by the inability to synthesize uridine 5'-diphosphate-galactose (galE point mutants and gal deletion mutants). Strains blocked only in the addition of galactose I, glucose I, or heptose II have low levels of transfectability, whereas strains with either more complete or more deficient lipopolysaccharide core are not competent for transfection. When normal lipopolysaccharide synthesis is restored either genetically or by furnishing exogenous galactose (galE point mutants that can still use it), the cells are not longer competent for transfection.

Full text

PDF
1633

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Lee F. D., Durston W. E. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A. 1973 Mar;70(3):782–786. doi: 10.1073/pnas.70.3.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benzinger R., Enquist L. W., Skalka A. Transfection of Escherichia coli spheroplasts. V. Activity of recBC nuclease in rec+ and rec minus spheroplasts measured with different forms of bacteriophage DNA. J Virol. 1975 Apr;15(4):861–871. doi: 10.1128/jvi.15.4.861-871.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen S. N., Chang A. C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110–2114. doi: 10.1073/pnas.69.8.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Enomoto M., Stocker B. A. Transduction by phage P1kc in Salmonella typhimurium. Virology. 1974 Aug;60(2):503–514. doi: 10.1016/0042-6822(74)90344-4. [DOI] [PubMed] [Google Scholar]
  5. Itikawa H., Demerec M. Salmonella typhimurium proline mutants. J Bacteriol. 1968 Mar;95(3):1189–1190. doi: 10.1128/jb.95.3.1189-1190.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  7. Leive L. The barrier function of the gram-negative envelope. Ann N Y Acad Sci. 1974 May 10;235(0):109–129. doi: 10.1111/j.1749-6632.1974.tb43261.x. [DOI] [PubMed] [Google Scholar]
  8. Lindberg A. A., Svensson S. Salmonella typhimurium mutations conferring resistance to Felix O phage without loss of smooth character: phage attachment and immunochemical and structural analyses of lipopolysaccharides. J Gen Microbiol. 1975 Mar;87(1):11–19. doi: 10.1099/00221287-87-1-11. [DOI] [PubMed] [Google Scholar]
  9. Lüderitz O., Staub A. M., Westphal O. Immunochemistry of O and R antigens of Salmonella and related Enterobacteriaceae. Bacteriol Rev. 1966 Mar;30(1):192–255. doi: 10.1128/br.30.1.192-255.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970 Oct 14;53(1):159–162. doi: 10.1016/0022-2836(70)90051-3. [DOI] [PubMed] [Google Scholar]
  11. Oishi M., Cosloy S. D. The genetic and biochemical basis of the transformability of Escherichia coli K12. Biochem Biophys Res Commun. 1972 Dec 18;49(6):1568–1572. doi: 10.1016/0006-291x(72)90520-7. [DOI] [PubMed] [Google Scholar]
  12. Ornellas E. P., Stocker B. A. Relation of lipopolysaccharide character to P1 sensitivity in Salmonella typhimurium. Virology. 1974 Aug;60(2):491–502. doi: 10.1016/0042-6822(74)90343-2. [DOI] [PubMed] [Google Scholar]
  13. Sgaramella V. Enzymatic oligomerization of bacteriophage P22 DNA and of linear Simian virus 40 DNA. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3389–3393. doi: 10.1073/pnas.69.11.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wilkinson R. G., Gemski P., Jr, Stocker B. A. Non-smooth mutants of Salmonella typhimurium: differentiation by phage sensitivity and genetic mapping. J Gen Microbiol. 1972 May;70(3):527–554. doi: 10.1099/00221287-70-3-527. [DOI] [PubMed] [Google Scholar]
  15. ZINDER N. D. Infective heredity in bacteria. Cold Spring Harb Symp Quant Biol. 1953;18:261–269. doi: 10.1101/sqb.1953.018.01.037. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES