Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Mar;79(7-8):1053–1060. doi: 10.1038/sj.bjc.6690169

Selective inhibition of MDR1 P-glycoprotein-mediated transport by the acridone carboxamide derivative GG918

A Wallstab 1, M Koester 1, M Böhme 1, D Keppler 1
PMCID: PMC2362229  PMID: 10098736

Abstract

The acridone carboxamide derivative GG918 (N-{4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)-ethyl]-phenyl}-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide) is a potent inhibitor of MDR1 P-glycoprotein-mediated multidrug resistance. Direct measurements of ATP-dependent MDR1 P-glycoprotein-mediated transport in plasma membrane vesicles from human and rat hepatocyte canalicular membranes indicated 50% inhibition at GG918 concentrations between 8 nM and 80 nM using N-pentyl-[3H]quinidinium, [14C]doxorubicin and [3H]daunorubicin as substrates. The inhibition constant Ki for GG918 was 35 nM in rat hepatocyte canalicular membrane vesicles with [3H]daunorubicin as the substrate. Photoaffinity labelling of canalicular and recombinant rat Mdr1b P-glycoprotein by [3H]azidopine was suppressed by 10 μM and 40 μM GG918. The high selectivity of GG918-induced inhibition was demonstrated in canalicular membrane vesicles and by analysis of the hepatobiliary elimination in rats using [3H]daunorubicin, [3H]taurocholate and [3H]cysteinyl leukotrienes as substrates for three distinct ATP-dependent export pumps. Almost complete inhibition of [3H]daunorubicin transport was observed at GG918 concentrations that did not affect the other hepatocyte canalicular export pumps. The high potency and selectivity of GG918 for the inhibition of human MDR1 and rat Mdr1b P-glycoprotein may serve to interfere with this type of multidrug resistance and provides a tool for studies on the function of these ATP-dependent transport proteins. © 1999 Cancer Research Campaign

Keywords: multidrug resistance (MDR), P-glycoprotein, ATP-dependent transport, transport inhibition, GG918 (formerly GF120918)

Full Text

The Full Text of this article is available as a PDF (305.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi Y., Kobayashi H., Kurumi Y., Shouji M., Kitano M., Yamamoto T. ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles. Hepatology. 1991 Oct;14(4 Pt 1):655–659. doi: 10.1016/0270-9139(91)90053-x. [DOI] [PubMed] [Google Scholar]
  2. Boesch D., Gavériaux C., Jachez B., Pourtier-Manzanedo A., Bollinger P., Loor F. In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res. 1991 Aug 15;51(16):4226–4233. [PubMed] [Google Scholar]
  3. Brown P. C., Thorgeirsson S. S., Silverman J. A. Cloning and regulation of the rat mdr2 gene. Nucleic Acids Res. 1993 Aug 11;21(16):3885–3891. doi: 10.1093/nar/21.16.3885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Böhme M., Büchler M., Müller M., Keppler D. Differential inhibition by cyclosporins of primary-active ATP-dependent transporters in the hepatocyte canalicular membrane. FEBS Lett. 1993 Oct 25;333(1-2):193–196. doi: 10.1016/0014-5793(93)80403-h. [DOI] [PubMed] [Google Scholar]
  5. Böhme M., Jedlitschky G., Leier I., Büchler M., Keppler D. ATP-dependent export pumps and their inhibition by cyclosporins. Adv Enzyme Regul. 1994;34:371–380. doi: 10.1016/0065-2571(94)90023-x. [DOI] [PubMed] [Google Scholar]
  6. Böhme M., Müller M., Leier I., Jedlitschky G., Keppler D. Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt transport in rat liver. Gastroenterology. 1994 Jul;107(1):255–265. doi: 10.1016/0016-5085(94)90084-1. [DOI] [PubMed] [Google Scholar]
  7. Büchler M., Böhme M., Ortlepp H., Keppler D. Functional reconstitution of ATP-dependent transporters from the solubilized hepatocyte canalicular membrane. Eur J Biochem. 1994 Sep 1;224(2):345–352. doi: 10.1111/j.1432-1033.1994.00345.x. [DOI] [PubMed] [Google Scholar]
  8. Dantzig A. H., Shepard R. L., Cao J., Law K. L., Ehlhardt W. J., Baughman T. M., Bumol T. F., Starling J. J. Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res. 1996 Sep 15;56(18):4171–4179. [PubMed] [Google Scholar]
  9. Denzlinger C., Rapp S., Hagmann W., Keppler D. Leukotrienes as mediators in tissue trauma. Science. 1985 Oct 18;230(4723):330–332. doi: 10.1126/science.4048937. [DOI] [PubMed] [Google Scholar]
  10. Devault A., Gros P. Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol Cell Biol. 1990 Apr;10(4):1652–1663. doi: 10.1128/mcb.10.4.1652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ford J. M., Hait W. N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev. 1990 Sep;42(3):155–199. [PubMed] [Google Scholar]
  12. Ford J. M., Prozialeck W. C., Hait W. N. Structural features determining activity of phenothiazines and related drugs for inhibition of cell growth and reversal of multidrug resistance. Mol Pharmacol. 1989 Jan;35(1):105–115. [PubMed] [Google Scholar]
  13. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  14. Gros P., Raymond M., Bell J., Housman D. Cloning and characterization of a second member of the mouse mdr gene family. Mol Cell Biol. 1988 Jul;8(7):2770–2778. doi: 10.1128/mcb.8.7.2770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guhlmann A., Krauss K., Oberdorfer F., Siegel T., Scheuber P. H., Müller J., Csuk-Glänzer B., Ziegler S., Ostertag H., Keppler D. Noninvasive assessment of hepatobiliary and renal elimination of cysteinyl leukotrienes by positron emission tomography. Hepatology. 1995 Jun;21(6):1568–1575. [PubMed] [Google Scholar]
  16. Hait W. N., Aftab D. T. Rational design and pre-clinical pharmacology of drugs for reversing multidrug resistance. Biochem Pharmacol. 1992 Jan 9;43(1):103–107. doi: 10.1016/0006-2952(92)90667-8. [DOI] [PubMed] [Google Scholar]
  17. Hyafil F., Vergely C., Du Vignaud P., Grand-Perret T. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 1993 Oct 1;53(19):4595–4602. [PubMed] [Google Scholar]
  18. Juliano R. L., Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976 Nov 11;455(1):152–162. doi: 10.1016/0005-2736(76)90160-7. [DOI] [PubMed] [Google Scholar]
  19. Kadmon M., Klünemann C., Böhme M., Ishikawa T., Gorgas K., Otto G., Herfarth C., Keppler D. Inhibition by cyclosporin A of adenosine triphosphate-dependent transport from the hepatocyte into bile. Gastroenterology. 1993 May;104(5):1507–1514. doi: 10.1016/0016-5085(93)90363-h. [DOI] [PubMed] [Google Scholar]
  20. Keppler D., Jedlitschky G., Leier I. Transport function and substrate specificity of multidrug resistance protein. Methods Enzymol. 1998;292:607–616. doi: 10.1016/s0076-6879(98)92047-x. [DOI] [PubMed] [Google Scholar]
  21. Keppler D., Konig J. Hepatic canalicular membrane 5: Expression and localization of the conjugate export pump encoded by the MRP2 (cMRP/cMOAT) gene in liver. FASEB J. 1997 Jun;11(7):509–516. doi: 10.1096/fasebj.11.7.9212074. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Leier I., Jedlitschky G., Buchholz U., Keppler D. Characterization of the ATP-dependent leukotriene C4 export carrier in mastocytoma cells. Eur J Biochem. 1994 Mar 1;220(2):599–606. doi: 10.1111/j.1432-1033.1994.tb18661.x. [DOI] [PubMed] [Google Scholar]
  24. Loe D. W., Deeley R. G., Cole S. P. Biology of the multidrug resistance-associated protein, MRP. Eur J Cancer. 1996 Jun;32A(6):945–957. doi: 10.1016/0959-8049(96)00046-9. [DOI] [PubMed] [Google Scholar]
  25. Meier P. J., Boyer J. L. Preparation of basolateral (sinusoidal) and canalicular plasma membrane vesicles for the study of hepatic transport processes. Methods Enzymol. 1990;192:534–545. doi: 10.1016/0076-6879(90)92092-r. [DOI] [PubMed] [Google Scholar]
  26. Müller M., Mayer R., Hero U., Keppler D. ATP-dependent transport of amphiphilic cations across the hepatocyte canalicular membrane mediated by mdr1 P-glycoprotein. FEBS Lett. 1994 Apr 25;343(2):168–172. doi: 10.1016/0014-5793(94)80312-9. [DOI] [PubMed] [Google Scholar]
  27. Nicholson D. W., Klemba M. W., Rasper D. M., Metters K. M., Zamboni R. J., Ford-Hutchinson A. W. Purification of human leukotriene C4 synthase from dimethylsulfoxide-differentiated U937 cells. Eur J Biochem. 1992 Oct 15;209(2):725–734. doi: 10.1111/j.1432-1033.1992.tb17341.x. [DOI] [PubMed] [Google Scholar]
  28. Nishida T., Gatmaitan Z., Che M., Arias I. M. Rat liver canalicular membrane vesicles contain an ATP-dependent bile acid transport system. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6590–6594. doi: 10.1073/pnas.88.15.6590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pearce H. L., Safa A. R., Bach N. J., Winter M. A., Cirtain M. C., Beck W. T. Essential features of the P-glycoprotein pharmacophore as defined by a series of reserpine analogs that modulate multidrug resistance. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5128–5132. doi: 10.1073/pnas.86.13.5128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pennock G. D., Dalton W. S., Roeske W. R., Appleton C. P., Mosley K., Plezia P., Miller T. P., Salmon S. E. Systemic toxic effects associated with high-dose verapamil infusion and chemotherapy administration. J Natl Cancer Inst. 1991 Jan 16;83(2):105–110. doi: 10.1093/jnci/83.2.105. [DOI] [PubMed] [Google Scholar]
  31. Roninson I. B., Chin J. E., Choi K. G., Gros P., Housman D. E., Fojo A., Shen D. W., Gottesman M. M., Pastan I. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4538–4542. doi: 10.1073/pnas.83.12.4538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schinkel A. H., Smit J. J., van Tellingen O., Beijnen J. H., Wagenaar E., van Deemter L., Mol C. A., van der Valk M. A., Robanus-Maandag E. C., te Riele H. P. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell. 1994 May 20;77(4):491–502. doi: 10.1016/0092-8674(94)90212-7. [DOI] [PubMed] [Google Scholar]
  33. Thiebaut F., Tsuruo T., Hamada H., Gottesman M. M., Pastan I., Willingham M. C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7735–7738. doi: 10.1073/pnas.84.21.7735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tsuruo T., Iida H., Tsukagoshi S., Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981 May;41(5):1967–1972. [PubMed] [Google Scholar]
  35. Twentyman P. R. Cyclosporins as drug resistance modifiers. Biochem Pharmacol. 1992 Jan 9;43(1):109–117. doi: 10.1016/0006-2952(92)90668-9. [DOI] [PubMed] [Google Scholar]
  36. Watanabe T., Tsuge H., Oh-Hara T., Naito M., Tsuruo T. Comparative study on reversal efficacy of SDZ PSC 833, cyclosporin A and verapamil on multidrug resistance in vitro and in vivo. Acta Oncol. 1995;34(2):235–241. doi: 10.3109/02841869509093961. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES