Abstract
The epidermal growth factor receptor (EGFR) plays an important role in the development and progression of prostate cancer and its overexpression is associated with decreased survival. With progression, prostate cancer cells switch from epidermal growth factor (EGF) to transforming growth factor α (TGF-α) synthesis, which contributes to autocrine growth and unrestrained proliferation. To define the molecular mechanisms involved in the regulation of EGFR expression by EGF and TGF-α we studied three human prostate cancer cell lines, androgen-responsive (LNCaP) and -unresponsive (DU145 and PC3). Here we show that TGF-α stabilized EGFR mRNA two- to threefold in all three cell lines, whilst EGF stabilized EGFR mRNA ∼ twofold in LNCaP and DU145 cells, but not in PC3 cells. Both ligands increased EGFR transcription in LNCaP and DU145 cells, with less effect in PC3 cells. In all three cell lines EGF reduced total EGFR protein levels more than TGF-α, but this was associated with a greater increase in de novo protein synthesis with EGF compared to TGF-α. Only EGF, however, shortened EGFR protein stability (half-life decreased from 5 h to 120 min), resulting in rapid disappearance of newly synthesized EGFR protein. Both ligands increased total LNCaP and DU145 cell numbers. These studies demonstrate that the EGF- and TGF-α-induced upregulation of EGFR mRNA and protein in human prostate cancer cell lines is complex and occurs at multiple, transcriptional and post-transcriptional levels. Taken together, these data provide novel insight into the molecular mechanisms by which TGF-α would preferentially maintain an autocrine loop in human prostate cancer cells. Furthermore, this work suggests that in human prostate cancer cells ligand-specific differential intracellular trafficking of the EGFR plays a major role in regulating its expression. © 1999 Cancer Research Campaign
Keywords: prostate cancer, EGF-receptor, mRNA stability, protein stability, autocrine loop
Full Text
The Full Text of this article is available as a PDF (376.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beguinot L., Hanover J. A., Ito S., Richert N. D., Willingham M. C., Pastan I. Phorbol esters induce transient internalization without degradation of unoccupied epidermal growth factor receptors. Proc Natl Acad Sci U S A. 1985 May;82(9):2774–2778. doi: 10.1073/pnas.82.9.2774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beguinot L., Lyall R. M., Willingham M. C., Pastan I. Down-regulation of the epidermal growth factor receptor in KB cells is due to receptor internalization and subsequent degradation in lysosomes. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2384–2388. doi: 10.1073/pnas.81.8.2384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bilous M., Milliken J., Mathijs J. M. Immunocytochemistry and in situ hybridisation of epidermal growth factor receptor and relation to prognostic factors in breast cancer. Eur J Cancer. 1992;28A(6-7):1033–1037. doi: 10.1016/0959-8049(92)90449-c. [DOI] [PubMed] [Google Scholar]
- Brass A. L., Barnard J., Patai B. L., Salvi D., Rukstalis D. B. Androgen up-regulates epidermal growth factor receptor expression and binding affinity in PC3 cell lines expressing the human androgen receptor. Cancer Res. 1995 Jul 15;55(14):3197–3203. [PubMed] [Google Scholar]
- Burden S., Yarden Y. Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron. 1997 Jun;18(6):847–855. doi: 10.1016/s0896-6273(00)80324-4. [DOI] [PubMed] [Google Scholar]
- Byrne R. L., Leung H., Neal D. E. Peptide growth factors in the prostate as mediators of stromal epithelial interaction. Br J Urol. 1996 May;77(5):627–633. doi: 10.1046/j.1464-410x.1996.09721.x. [DOI] [PubMed] [Google Scholar]
- Carruba G., Leake R. E., Rinaldi F., Chalmers D., Comito L., Sorci C., Pavone-Macaluso M., Castagnetta L. A. Steroid-growth factor interaction in human prostate cancer. 1. Short-term effects of transforming growth factors on growth of human prostate cancer cells. Steroids. 1994 Jul;59(7):412–420. doi: 10.1016/0039-128x(94)90010-8. [DOI] [PubMed] [Google Scholar]
- Ching K. Z., Ramsey E., Pettigrew N., D'Cunha R., Jason M., Dodd J. G. Expression of mRNA for epidermal growth factor, transforming growth factor-alpha and their receptor in human prostate tissue and cell lines. Mol Cell Biochem. 1993 Sep 22;126(2):151–158. doi: 10.1007/BF00925693. [DOI] [PubMed] [Google Scholar]
- Clark A. J., Ishii S., Richert N., Merlino G. T., Pastan I. Epidermal growth factor regulates the expression of its own receptor. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8374–8378. doi: 10.1073/pnas.82.24.8374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connolly J. M., Rose D. P. Autocrine regulation of DU145 human prostate cancer cell growth by epidermal growth factor-related polypeptides. Prostate. 1991;19(2):173–180. doi: 10.1002/pros.2990190210. [DOI] [PubMed] [Google Scholar]
- Connolly J. M., Rose D. P. Production of epidermal growth factor and transforming growth factor-alpha by the androgen-responsive LNCaP human prostate cancer cell line. Prostate. 1990;16(3):209–218. doi: 10.1002/pros.2990160304. [DOI] [PubMed] [Google Scholar]
- Davies P., Eaton C. L. Binding of epidermal growth factor by human normal, hypertrophic, and carcinomatous prostate. Prostate. 1989;14(2):123–132. doi: 10.1002/pros.2990140206. [DOI] [PubMed] [Google Scholar]
- Decker C. J., Parker R. Mechanisms of mRNA degradation in eukaryotes. Trends Biochem Sci. 1994 Aug;19(8):336–340. doi: 10.1016/0968-0004(94)90073-6. [DOI] [PubMed] [Google Scholar]
- Earp H. S., Austin K. S., Blaisdell J., Rubin R. A., Nelson K. G., Lee L. W., Grisham J. W. Epidermal growth factor (EGF) stimulates EGF receptor synthesis. J Biol Chem. 1986 Apr 15;261(11):4777–4780. [PubMed] [Google Scholar]
- Ebner R., Derynck R. Epidermal growth factor and transforming growth factor-alpha: differential intracellular routing and processing of ligand-receptor complexes. Cell Regul. 1991 Aug;2(8):599–612. doi: 10.1091/mbc.2.8.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ennis B. W., Valverius E. M., Bates S. E., Lippman M. E., Bellot F., Kris R., Schlessinger J., Masui H., Goldenberg A., Mendelsohn J. Anti-epidermal growth factor receptor antibodies inhibit the autocrine-stimulated growth of MDA-468 human breast cancer cells. Mol Endocrinol. 1989 Nov;3(11):1830–1838. doi: 10.1210/mend-3-11-1830. [DOI] [PubMed] [Google Scholar]
- Fernandez-Pol J. A., Hamilton P. D., Klos D. J. Transcriptional regulation of proto-oncogene expression by epidermal growth factor, transforming growth factor beta 1, and triiodothyronine in MDA-468 cells. J Biol Chem. 1989 Mar 5;264(7):4151–4156. [PubMed] [Google Scholar]
- French A. R., Tadaki D. K., Niyogi S. K., Lauffenburger D. A. Intracellular trafficking of epidermal growth factor family ligands is directly influenced by the pH sensitivity of the receptor/ligand interaction. J Biol Chem. 1995 Mar 3;270(9):4334–4340. doi: 10.1074/jbc.270.9.4334. [DOI] [PubMed] [Google Scholar]
- Glynne-Jones E., Goddard L., Harper M. E. Comparative analysis of mRNA and protein expression for epidermal growth factor receptor and ligands relative to the proliferative index in human prostate tissue. Hum Pathol. 1996 Jul;27(7):688–694. doi: 10.1016/s0046-8177(96)90399-8. [DOI] [PubMed] [Google Scholar]
- Gullick W. J. Prevalence of aberrant expression of the epidermal growth factor receptor in human cancers. Br Med Bull. 1991 Jan;47(1):87–98. doi: 10.1093/oxfordjournals.bmb.a072464. [DOI] [PubMed] [Google Scholar]
- Hanover J. A., Beguinot L., Willingham M. C., Pastan I. H. Transit of receptors for epidermal growth factor and transferrin through clathrin-coated pits. Analysis of the kinetics of receptor entry. J Biol Chem. 1985 Dec 15;260(29):15938–15945. [PubMed] [Google Scholar]
- Hofer D. R., Sherwood E. R., Bromberg W. D., Mendelsohn J., Lee C., Kozlowski J. M. Autonomous growth of androgen-independent human prostatic carcinoma cells: role of transforming growth factor alpha. Cancer Res. 1991 Jun 1;51(11):2780–2785. [PubMed] [Google Scholar]
- Jarrard D. F., Blitz B. F., Smith R. C., Patai B. L., Rukstalis D. B. Effect of epidermal growth factor on prostate cancer cell line PC3 growth and invasion. Prostate. 1994;24(1):46–53. doi: 10.1002/pros.2990240110. [DOI] [PubMed] [Google Scholar]
- Jinno Y., Merlino G. T., Pastan I. A novel effect of EGF on mRNA stability. Nucleic Acids Res. 1988 Jun 10;16(11):4957–4966. doi: 10.1093/nar/16.11.4957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawamoto T., Sato J. D., Le A., Polikoff J., Sato G. H., Mendelsohn J. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1337–1341. doi: 10.1073/pnas.80.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kesavan P., Mukhopadhayay S., Murphy S., Rengaraju M., Lazar M. A., Das M. Thyroid hormone decreases the expression of epidermal growth factor receptor. J Biol Chem. 1991 Jun 5;266(16):10282–10286. [PubMed] [Google Scholar]
- Kudlow J. E., Cheung C. Y., Bjorge J. D. Epidermal growth factor stimulates the synthesis of its own receptor in a human breast cancer cell line. J Biol Chem. 1986 Mar 25;261(9):4134–4138. [PubMed] [Google Scholar]
- Kurten R. C., Cadena D. L., Gill G. N. Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science. 1996 May 17;272(5264):1008–1010. doi: 10.1126/science.272.5264.1008. [DOI] [PubMed] [Google Scholar]
- Lifshitz A., Lazar C. S., Buss J. E., Gill G. N. Analysis of morphology and receptor metabolism in clonal variant A431 cells with differing growth responses to epidermal growth factor. J Cell Physiol. 1983 Jun;115(3):235–242. doi: 10.1002/jcp.1041150304. [DOI] [PubMed] [Google Scholar]
- Lippman M. E. The development of biological therapies for breast cancer. Science. 1993 Jan 29;259(5095):631–632. doi: 10.1126/science.8430312. [DOI] [PubMed] [Google Scholar]
- Liu X. H., Wiley H. S., Meikle A. W. Androgens regulate proliferation of human prostate cancer cells in culture by increasing transforming growth factor-alpha (TGF-alpha) and epidermal growth factor (EGF)/TGF-alpha receptor. J Clin Endocrinol Metab. 1993 Dec;77(6):1472–1478. doi: 10.1210/jcem.77.6.8263129. [DOI] [PubMed] [Google Scholar]
- Maddy S. Q., Chisholm G. D., Busuttil A., Habib F. K. Epidermal growth factor receptors in human prostate cancer: correlation with histological differentiation of the tumour. Br J Cancer. 1989 Jul;60(1):41–44. doi: 10.1038/bjc.1989.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelsohn J. Epidermal growth factor receptor as a target for therapy with antireceptor monoclonal antibodies. J Natl Cancer Inst Monogr. 1992;(13):125–131. [PubMed] [Google Scholar]
- Morris G. L., Dodd J. G. Epidermal growth factor receptor mRNA levels in human prostatic tumors and cell lines. J Urol. 1990 Jun;143(6):1272–1274. doi: 10.1016/s0022-5347(17)40253-9. [DOI] [PubMed] [Google Scholar]
- Nomura A. M., Kolonel L. N. Prostate cancer: a current perspective. Epidemiol Rev. 1991;13:200–227. doi: 10.1093/oxfordjournals.epirev.a036069. [DOI] [PubMed] [Google Scholar]
- Peltz S. W., Jacobson A. mRNA stability: in trans-it. Curr Opin Cell Biol. 1992 Dec;4(6):979–983. doi: 10.1016/0955-0674(92)90129-z. [DOI] [PubMed] [Google Scholar]
- Prewett M., Rockwell P., Rockwell R. F., Giorgio N. A., Mendelsohn J., Scher H. I., Goldstein N. I. The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J Immunother Emphasis Tumor Immunol. 1996 Nov;19(6):419–427. doi: 10.1097/00002371-199611000-00006. [DOI] [PubMed] [Google Scholar]
- Sachs A. B. Messenger RNA degradation in eukaryotes. Cell. 1993 Aug 13;74(3):413–421. doi: 10.1016/0092-8674(93)80043-e. [DOI] [PubMed] [Google Scholar]
- Schuurmans A. L., Bolt J., Mulder E. Androgens stimulate both growth rate and epidermal growth factor receptor activity of the human prostate tumor cell LNCaP. Prostate. 1988;12(1):55–63. doi: 10.1002/pros.2990120108. [DOI] [PubMed] [Google Scholar]
- Schuurmans A. L., Bolt J., Veldscholte J., Mulder E. Regulation of growth of LNCaP human prostate tumor cells by growth factors and steroid hormones. J Steroid Biochem Mol Biol. 1991;40(1-3):193–197. doi: 10.1016/0960-0760(91)90182-5. [DOI] [PubMed] [Google Scholar]
- Steiner M. S., Barrack E. R. Transforming growth factor-beta 1 overproduction in prostate cancer: effects on growth in vivo and in vitro. Mol Endocrinol. 1992 Jan;6(1):15–25. doi: 10.1210/mend.6.1.1738367. [DOI] [PubMed] [Google Scholar]
- Steiner M. S. Role of peptide growth factors in the prostate: a review. Urology. 1993 Jul;42(1):99–110. doi: 10.1016/0090-4295(93)90352-b. [DOI] [PubMed] [Google Scholar]
- Tilbrook P. A., Bittorf T., Busfield S. J., Chappell D., Klinken S. P. Disrupted signaling in a mutant J2E cell line that shows enhanced viability, but does not proliferate or differentiate, with erythropoietin. J Biol Chem. 1996 Feb 16;271(7):3453–3459. doi: 10.1074/jbc.271.7.3453. [DOI] [PubMed] [Google Scholar]
- Todaro G. J., Fryling C., De Larco J. E. Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5258–5262. doi: 10.1073/pnas.77.9.5258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traish A. M., Wotiz H. H. Prostatic epidermal growth factor receptors and their regulation by androgens. Endocrinology. 1987 Oct;121(4):1461–1467. doi: 10.1210/endo-121-4-1461. [DOI] [PubMed] [Google Scholar]
- Turkeri L. N., Sakr W. A., Wykes S. M., Grignon D. J., Pontes J. E., Macoska J. A. Comparative analysis of epidermal growth factor receptor gene expression and protein product in benign, premalignant, and malignant prostate tissue. Prostate. 1994 Oct;25(4):199–205. doi: 10.1002/pros.2990250405. [DOI] [PubMed] [Google Scholar]
- Tzahar E., Pinkas-Kramarski R., Moyer J. D., Klapper L. N., Alroy I., Levkowitz G., Shelly M., Henis S., Eisenstein M., Ratzkin B. J. Bivalence of EGF-like ligands drives the ErbB signaling network. EMBO J. 1997 Aug 15;16(16):4938–4950. doi: 10.1093/emboj/16.16.4938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vieira A. V., Lamaze C., Schmid S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science. 1996 Dec 20;274(5295):2086–2089. doi: 10.1126/science.274.5295.2086. [DOI] [PubMed] [Google Scholar]
- Waterman H., Sabanai I., Geiger B., Yarden Y. Alternative intracellular routing of ErbB receptors may determine signaling potency. J Biol Chem. 1998 May 29;273(22):13819–13827. doi: 10.1074/jbc.273.22.13819. [DOI] [PubMed] [Google Scholar]
- Wilding G., Valverius E., Knabbe C., Gelmann E. P. Role of transforming growth factor-alpha in human prostate cancer cell growth. Prostate. 1989;15(1):1–12. doi: 10.1002/pros.2990150102. [DOI] [PubMed] [Google Scholar]
- Wiley H. S., Herbst J. J., Walsh B. J., Lauffenburger D. A., Rosenfeld M. G., Gill G. N. The role of tyrosine kinase activity in endocytosis, compartmentation, and down-regulation of the epidermal growth factor receptor. J Biol Chem. 1991 Jun 15;266(17):11083–11094. [PubMed] [Google Scholar]
- Xie H., Turner T., Wang M. H., Singh R. K., Siegal G. P., Wells A. In vitro invasiveness of DU-145 human prostate carcinoma cells is modulated by EGF receptor-mediated signals. Clin Exp Metastasis. 1995 Nov;13(6):407–419. doi: 10.1007/BF00118180. [DOI] [PubMed] [Google Scholar]
- Zhau H. Y., Chang S. M., Chen B. Q., Wang Y., Zhang H., Kao C., Sang Q. A., Pathak S. J., Chung L. W. Androgen-repressed phenotype in human prostate cancer. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15152–15157. doi: 10.1073/pnas.93.26.15152. [DOI] [PMC free article] [PubMed] [Google Scholar]
