Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Sep;81(2):242–251. doi: 10.1038/sj.bjc.6690684

Switch from antagonist to agonist of the androgen receptor blocker bicalutamide is associated with prostate tumour progression in a new model system

Z Culig 1,1, J Hoffmann 4,1, M Erdel 2, I E Eder 1, A Hobisch 1, A Hittmair 3, G Bartsch 1, G Utermann 2, M R Schneider 4, K Parczyk 4, H Klocker 1
PMCID: PMC2362859  PMID: 10496349

Abstract

Advanced prostate cancer is treated by androgen ablation and/or androgen receptor (AR) antagonists. In order to investigate the mechanisms relevant to the development of therapy-resistant tumours, we established a new tumour model which closely resembles the situation in patients who receive androgen ablation therapy. Androgen-sensitive LNCaP cells were kept in androgen-depleted medium for 87 passages. The new LNCaP cell subline established in this manner, LNCaP-abl, displayed a hypersensitive biphasic proliferative response to androgen until passage 75. Maximal proliferation of LNCaP-abl cells was achieved at 0.001 nM of the synthetic androgen methyltrienolone (R1881), whereas 0.01 nM of this compound induced the same effect in parental cells. At later passages (> 75), androgen exerted an inhibitory effect on growth of LNCaP-abl cells. The non-steroidal anti-androgen bicalutamide stimulated proliferation of LNCaP-abl cells. AR protein expression in LNCaP-abl cells increased approximately fourfold. The basal AR transcriptional activity was 30-fold higher in LNCaP-abl than in LNCaP cells. R1881 stimulated reporter gene activity in LNCaP-abl cells even at 0.01 nM, whereas 0.1 nM of R1881 was needed for induction of the same level of reporter gene activity in LNCaP cells. Bicalutamide that acts as a pure antagonist in parental LNCaP cells showed agonistic effects on AR transactivation activity in LNCaP-abl cells and was not able to block the effects of androgen in these cells. The non-steroidal AR blocker hydroxyflutamide exerted stimulatory effects on AR activity in both LNCaP and LNCaP-abl cells; however, the induction of reporter gene activity by hydroxyflutamide was 2.4- to 4-fold higher in the LNCaP-abl subline. The changes in AR activity were associated neither with a new alteration in AR cDNA sequence nor with amplification of the AR gene. Growth of LNCaP-abl xenografts in nude mice was stimulated by bicalutamide and repressed by testosterone. In conclusion, our results show for the first time that the non-steroidal anti-androgen bicalutamide acquires agonistic properties during long-term androgen ablation. These findings may have repercussions on the natural course of prostate cancer with androgen deprivation and on strategies of therapeutic intervention. © 1999 Cancer Research Campaign

Keywords: prostate cancer, androgen ablation, LNCaP cells, androgen receptor, bicalutamide, tumour progression

Full Text

The Full Text of this article is available as a PDF (196.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cher M. L., Bova G. S., Moore D. H., Small E. J., Carroll P. R., Pin S. S., Epstein J. I., Isaacs W. B., Jensen R. H. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res. 1996 Jul 1;56(13):3091–3102. [PubMed] [Google Scholar]
  2. Cronauer M. V., Klocker H., Talasz H., Geisen F. H., Hobisch A., Radmayr C., Böck G., Culig Z., Schirmer M., Reissigl A. Inhibitory effects of the nucleoside analogue gemcitabine on prostatic carcinoma cells. Prostate. 1996 Mar;28(3):172–181. doi: 10.1002/(SICI)1097-0045(199603)28:3<172::AID-PROS4>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  3. Culig Z., Hobisch A., Cronauer M. V., Cato A. C., Hittmair A., Radmayr C., Eberle J., Bartsch G., Klocker H. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol. 1993 Dec;7(12):1541–1550. doi: 10.1210/mend.7.12.8145761. [DOI] [PubMed] [Google Scholar]
  4. Culig Z., Hobisch A., Cronauer M. V., Radmayr C., Trapman J., Hittmair A., Bartsch G., Klocker H. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 1994 Oct 15;54(20):5474–5478. [PubMed] [Google Scholar]
  5. Culig Z., Hobisch A., Hittmair A., Cronauer M. V., Radmayr C., Bartsch G., Klocker H. Androgen receptor gene mutations in prostate cancer. Implications for disease progression and therapy. Drugs Aging. 1997 Jan;10(1):50–58. doi: 10.2165/00002512-199710010-00005. [DOI] [PubMed] [Google Scholar]
  6. Culig Z., Hobisch A., Hittmair A., Cronauer M. V., Radmayr C., Zhang J., Bartsch G., Klocker H. Synergistic activation of androgen receptor by androgen and luteinizing hormone-releasing hormone in prostatic carcinoma cells. Prostate. 1997 Jul 1;32(2):106–114. doi: 10.1002/(sici)1097-0045(19970701)32:2<106::aid-pros5>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  7. Culig Z., Klocker H., Eberle J., Kaspar F., Hobisch A., Cronauer M. V., Bartsch G. DNA sequence of the androgen receptor in prostatic tumor cell lines and tissue specimens assessed by means of the polymerase chain reaction. Prostate. 1993;22(1):11–22. doi: 10.1002/pros.2990220103. [DOI] [PubMed] [Google Scholar]
  8. Dijkman G. A., Debruyne F. M. Epidemiology of prostate cancer. Eur Urol. 1996;30(3):281–295. doi: 10.1159/000474185. [DOI] [PubMed] [Google Scholar]
  9. Froesch B. A., Takayama S., Reed J. C. BAG-1L protein enhances androgen receptor function. J Biol Chem. 1998 May 8;273(19):11660–11666. doi: 10.1074/jbc.273.19.11660. [DOI] [PubMed] [Google Scholar]
  10. Gibas Z., Becher R., Kawinski E., Horoszewicz J., Sandberg A. A. A high-resolution study of chromosome changes in a human prostatic carcinoma cell line (LNCaP). Cancer Genet Cytogenet. 1984 Apr;11(4):399–404. doi: 10.1016/0165-4608(84)90020-7. [DOI] [PubMed] [Google Scholar]
  11. Gupta C., Chandorkar A., Nguyen A. P. Activation of androgen receptor in epidermal growth factor modulation of fetal mouse sexual differentiation. Mol Cell Endocrinol. 1996 Oct 14;123(1):89–95. doi: 10.1016/0303-7207(96)03899-3. [DOI] [PubMed] [Google Scholar]
  12. Hobisch A., Culig Z., Radmayr C., Bartsch G., Klocker H., Hittmair A. Androgen receptor status of lymph node metastases from prostate cancer. Prostate. 1996 Feb;28(2):129–135. doi: 10.1002/(SICI)1097-0045(199602)28:2<129::AID-PROS9>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  13. Hobisch A., Culig Z., Radmayr C., Bartsch G., Klocker H., Hittmair A. Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res. 1995 Jul 15;55(14):3068–3072. [PubMed] [Google Scholar]
  14. Horoszewicz J. S., Leong S. S., Kawinski E., Karr J. P., Rosenthal H., Chu T. M., Mirand E. A., Murphy G. P. LNCaP model of human prostatic carcinoma. Cancer Res. 1983 Apr;43(4):1809–1818. [PubMed] [Google Scholar]
  15. Hyytinen E. R., Thalmann G. N., Zhau H. E., Karhu R., Kallioniemi O. P., Chung L. W., Visakorpi T. Genetic changes associated with the acquisition of androgen-independent growth, tumorigenicity and metastatic potential in a prostate cancer model. Br J Cancer. 1997;75(2):190–195. doi: 10.1038/bjc.1997.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ikonen T., Palvimo J. J., Jänne O. A. Interaction between the amino- and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. J Biol Chem. 1997 Nov 21;272(47):29821–29828. doi: 10.1074/jbc.272.47.29821. [DOI] [PubMed] [Google Scholar]
  17. Jeng M. H., Shupnik M. A., Bender T. P., Westin E. H., Bandyopadhyay D., Kumar R., Masamura S., Santen R. J. Estrogen receptor expression and function in long-term estrogen-deprived human breast cancer cells. Endocrinology. 1998 Oct;139(10):4164–4174. doi: 10.1210/endo.139.10.6229. [DOI] [PubMed] [Google Scholar]
  18. Kaighn M. E., Narayan K. S., Ohnuki Y., Lechner J. F., Jones L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 1979 Jul;17(1):16–23. [PubMed] [Google Scholar]
  19. Kirschenbaum A., Ren M., Levine A. C. Enhanced androgen sensitivity in serum-free medium of a subline of the LNCaP human prostate cancer cell line. Steroids. 1993 Sep;58(9):439–444. doi: 10.1016/0039-128x(93)90084-z. [DOI] [PubMed] [Google Scholar]
  20. Koivisto P., Kononen J., Palmberg C., Tammela T., Hyytinen E., Isola J., Trapman J., Cleutjens K., Noordzij A., Visakorpi T. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 1997 Jan 15;57(2):314–319. [PubMed] [Google Scholar]
  21. Kokontis J. M., Hay N., Liao S. Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Mol Endocrinol. 1998 Jul;12(7):941–953. doi: 10.1210/mend.12.7.0136. [DOI] [PubMed] [Google Scholar]
  22. Kokontis J., Takakura K., Hay N., Liao S. Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Res. 1994 Mar 15;54(6):1566–1573. [PubMed] [Google Scholar]
  23. König J. J., Kamst E., Hagemeijer A., Romijn J. C., Horoszewicz J., Schröder F. H. Cytogenetic characterization of several androgen responsive and unresponsive sublines of the human prostatic carcinoma cell line LNCaP. Urol Res. 1989;17(2):79–86. doi: 10.1007/BF00262025. [DOI] [PubMed] [Google Scholar]
  24. Langer P. R., Waldrop A. A., Ward D. C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6633–6637. doi: 10.1073/pnas.78.11.6633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee C., Sutkowski D. M., Sensibar J. A., Zelner D., Kim I., Amsel I., Shaw N., Prins G. S., Kozlowski J. M. Regulation of proliferation and production of prostate-specific antigen in androgen-sensitive prostatic cancer cells, LNCaP, by dihydrotestosterone. Endocrinology. 1995 Feb;136(2):796–803. doi: 10.1210/endo.136.2.7530653. [DOI] [PubMed] [Google Scholar]
  26. Miyamoto H., Yeh S., Wilding G., Chang C. Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7379–7384. doi: 10.1073/pnas.95.13.7379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nakhla A. M., Romas N. A., Rosner W. Estradiol activates the prostate androgen receptor and prostate-specific antigen secretion through the intermediacy of sex hormone-binding globulin. J Biol Chem. 1997 Mar 14;272(11):6838–6841. doi: 10.1074/jbc.272.11.6838. [DOI] [PubMed] [Google Scholar]
  28. Nazareth L. V., Weigel N. L. Activation of the human androgen receptor through a protein kinase A signaling pathway. J Biol Chem. 1996 Aug 16;271(33):19900–19907. doi: 10.1074/jbc.271.33.19900. [DOI] [PubMed] [Google Scholar]
  29. Romijn J. C., Verkoelen C. F., Schroeder F. H. Application of the MTT assay to human prostate cancer cell lines in vitro: establishment of test conditions and assessment of hormone-stimulated growth and drug-induced cytostatic and cytotoxic effects. Prostate. 1988;12(1):99–110. doi: 10.1002/pros.2990120112. [DOI] [PubMed] [Google Scholar]
  30. Scher H. I., Kolvenbag G. J. The antiandrogen withdrawal syndrome in relapsed prostate cancer. Eur Urol. 1997;31 (Suppl 2):3–27. doi: 10.1159/000474540. [DOI] [PubMed] [Google Scholar]
  31. Schuurmans A. L., Bolt J., Voorhorst M. M., Blankenstein R. A., Mulder E. Regulation of growth and epidermal growth factor receptor levels of LNCaP prostate tumor cells by different steroids. Int J Cancer. 1988 Dec 15;42(6):917–922. doi: 10.1002/ijc.2910420622. [DOI] [PubMed] [Google Scholar]
  32. Stone K. R., Mickey D. D., Wunderli H., Mickey G. H., Paulson D. F. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer. 1978 Mar 15;21(3):274–281. doi: 10.1002/ijc.2910210305. [DOI] [PubMed] [Google Scholar]
  33. Taplin M. E., Bubley G. J., Shuster T. D., Frantz M. E., Spooner A. E., Ogata G. K., Keer H. N., Balk S. P. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med. 1995 May 25;332(21):1393–1398. doi: 10.1056/NEJM199505253322101. [DOI] [PubMed] [Google Scholar]
  34. Thomson A. A., Foster B. A., Cunha G. R. Analysis of growth factor and receptor mRNA levels during development of the rat seminal vesicle and prostate. Development. 1997 Jun;124(12):2431–2439. doi: 10.1242/dev.124.12.2431. [DOI] [PubMed] [Google Scholar]
  35. Tilley W. D., Wilson C. M., Marcelli M., McPhaul M. J. Androgen receptor gene expression in human prostate carcinoma cell lines. Cancer Res. 1990 Sep 1;50(17):5382–5386. [PubMed] [Google Scholar]
  36. Veldscholte J., Berrevoets C. A., Zegers N. D., van der Kwast T. H., Grootegoed J. A., Mulder E. Hormone-induced dissociation of the androgen receptor-heat-shock protein complex: use of a new monoclonal antibody to distinguish transformed from nontransformed receptors. Biochemistry. 1992 Aug 18;31(32):7422–7430. doi: 10.1021/bi00147a029. [DOI] [PubMed] [Google Scholar]
  37. Veldscholte J., Ris-Stalpers C., Kuiper G. G., Jenster G., Berrevoets C., Claassen E., van Rooij H. C., Trapman J., Brinkmann A. O., Mulder E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun. 1990 Dec 14;173(2):534–540. doi: 10.1016/s0006-291x(05)80067-1. [DOI] [PubMed] [Google Scholar]
  38. Visakorpi T., Hyytinen E., Koivisto P., Tanner M., Keinänen R., Palmberg C., Palotie A., Tammela T., Isola J., Kallioniemi O. P. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet. 1995 Apr;9(4):401–406. doi: 10.1038/ng0495-401. [DOI] [PubMed] [Google Scholar]
  39. Voegel J. J., Heine M. J., Zechel C., Chambon P., Gronemeyer H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 1996 Jul 15;15(14):3667–3675. [PMC free article] [PubMed] [Google Scholar]
  40. Wilding G., Chen M., Gelmann E. P. Aberrant response in vitro of hormone-responsive prostate cancer cells to antiandrogens. Prostate. 1989;14(2):103–115. doi: 10.1002/pros.2990140204. [DOI] [PubMed] [Google Scholar]
  41. Yeh S., Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5517–5521. doi: 10.1073/pnas.93.11.5517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhau H. Y., Chang S. M., Chen B. Q., Wang Y., Zhang H., Kao C., Sang Q. A., Pathak S. J., Chung L. W. Androgen-repressed phenotype in human prostate cancer. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15152–15157. doi: 10.1073/pnas.93.26.15152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. van der Kwast T. H., Schalken J., Ruizeveld de Winter J. A., van Vroonhoven C. C., Mulder E., Boersma W., Trapman J. Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer. 1991 May 10;48(2):189–193. doi: 10.1002/ijc.2910480206. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES