Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Sep;81(2):359–366. doi: 10.1038/sj.bjc.6690701

The distinct role of CD4+ and CD8+ T-cells during the anti-tumour effects of targeted superantigens

M J Litton 1, M Dohlsten 3,6, A Rosendahl 2,6, L Ohlsson 2, M Søgaard 2, J Andersson 1,4, U Andersson 1,5
PMCID: PMC2362868  PMID: 10496366

Abstract

To target T-cells to the tumour area we created a recombinant protein of the bacterial superantigen (SAg) Staphylococcal enterotoxin A (SEA) and the Fab-fragment of a tumour-reactive antibody. This antibody-targeted SAg immunotherapy therapy has been shown to be highly efficient, eliminating > 95% of the pulmonary metastasis in mice carrying established melanoma micrometastases. Earlier studies demonstrated that elimination of the C215-expressing B16-melanoma lung metastasis was dependent on interferon (IFN)-γ release and expression of perforin. In the present study, therapeutic effector functions were analysed both locally at the tumour site and systemically in the spleen. In order to elucidate the role of each T-cell subset during Fab–SEA therapy, CD4 knock-out (KO) and CD8 KO mice were used. Tumour size reduction was statistically significant in Fab–SEA-based tumour therapy in both types of T-cell-deficient mice compared to wild-type mice. CD4 KO mice displayed a drastic reduction in the number of tumour-infiltrating macrophages and CD8+ T-cells. Therapy-induced accumulation of perforin-containing cells at the tumour site was significantly impaired in CD8 KO mice, and marginally in CD4 KO mice. Moreover, CD4 KO mice failed to produce substantial amounts of the tumour suppressive cytokine IFN-γ. This is in sharp contrast to normal mice where a massive local release was recorded. CD8 KO mice displayed a spontaneous production of interleukin (IL)-4 and IL-10 locally in the tumour. Neither normal nor CD4 KO mice produced detectable levels of these Th-2-associated cytokines. The high level of IL-10 was demonstrated to inhibit Fab–SEA tumour therapy, since the therapeutic efficacy was significantly higher in IL-10 KO mice. These results illustrate the importance of a finely tuned cellular collaboration to regulate the various phases of an efficient anti-tumour immune response. © 1999 Cancer Research Campaign

Keywords: tumour therapy, superantigen, cytokines, perforin, knock out mice, T-cells

Full Text

The Full Text of this article is available as a PDF (317.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aruga A., Aruga E., Tanigawa K., Bishop D. K., Sondak V. K., Chang A. E. Type 1 versus type 2 cytokine release by Vbeta T cell subpopulations determines in vivo antitumor reactivity: IL-10 mediates a suppressive role. J Immunol. 1997 Jul 15;159(2):664–673. [PubMed] [Google Scholar]
  2. Battegay M., Moskophidis D., Rahemtulla A., Hengartner H., Mak T. W., Zinkernagel R. M. Enhanced establishment of a virus carrier state in adult CD4+ T-cell-deficient mice. J Virol. 1994 Jul;68(7):4700–4704. doi: 10.1128/jvi.68.7.4700-4704.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coppola M. A., Blackman M. A. Bacterial superantigens reactivate antigen-specific CD8+ memory T cells. Int Immunol. 1997 Sep;9(9):1393–1403. doi: 10.1093/intimm/9.9.1393. [DOI] [PubMed] [Google Scholar]
  4. Dhein J., Walczak H., Bäumler C., Debatin K. M., Krammer P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95) Nature. 1995 Feb 2;373(6513):438–441. doi: 10.1038/373438a0. [DOI] [PubMed] [Google Scholar]
  5. Ding L., Linsley P. S., Huang L. Y., Germain R. N., Shevach E. M. IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J Immunol. 1993 Aug 1;151(3):1224–1234. [PubMed] [Google Scholar]
  6. Dohlsten M., Abrahmsén L., Björk P., Lando P. A., Hedlund G., Forsberg G., Brodin T., Gascoigne N. R., Förberg C., Lind P. Monoclonal antibody-superantigen fusion proteins: tumor-specific agents for T-cell-based tumor therapy. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8945–8949. doi: 10.1073/pnas.91.19.8945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dohlsten M., Hansson J., Ohlsson L., Litton M., Kalland T. Antibody-targeted superantigens are potent inducers of tumor-infiltrating T lymphocytes in vivo. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9791–9795. doi: 10.1073/pnas.92.21.9791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dohlsten M., Lando P. A., Björk P., Abrahmsén L., Ohlsson L., Lind P., Kalland T. Immunotherapy of human colon cancer by antibody-targeted superantigens. Cancer Immunol Immunother. 1995 Sep;41(3):162–168. doi: 10.1007/BF01521342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dohlsten M., Lando P. A., Hedlund G., Trowsdale J., Kalland T. Targeting of human cytotoxic T lymphocytes to MHC class II-expressing cells by staphylococcal enterotoxins. Immunology. 1990 Sep;71(1):96–100. [PMC free article] [PubMed] [Google Scholar]
  10. Dohlsten M., Sundstedt A., Björklund M., Hedlund G., Kalland T. Superantigen-induced cytokines suppress growth of human colon-carcinoma cells. Int J Cancer. 1993 May 28;54(3):482–488. doi: 10.1002/ijc.2910540321. [DOI] [PubMed] [Google Scholar]
  11. Fiorentino D. F., Zlotnik A., Vieira P., Mosmann T. R., Howard M., Moore K. W., O'Garra A. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol. 1991 May 15;146(10):3444–3451. [PubMed] [Google Scholar]
  12. Fitzpatrick L., Makrigiannis A. P., Kaiser M., Hoskin D. W. Anti-CD3-activated killer T cells: interferon-gamma and interleukin-10 cross-regulate granzyme B expression and the induction of major histocompatibility complex-unrestricted cytotoxicity. J Interferon Cytokine Res. 1996 Jul;16(7):537–546. doi: 10.1089/jir.1996.16.537. [DOI] [PubMed] [Google Scholar]
  13. Fung-Leung W. P., Schilham M. W., Rahemtulla A., Kündig T. M., Vollenweider M., Potter J., van Ewijk W., Mak T. W. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell. 1991 May 3;65(3):443–449. doi: 10.1016/0092-8674(91)90462-8. [DOI] [PubMed] [Google Scholar]
  14. Giovarelli M., Musiani P., Modesti A., Dellabona P., Casorati G., Allione A., Consalvo M., Cavallo F., di Pierro F., De Giovanni C. Local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody-dependent immune memory. J Immunol. 1995 Sep 15;155(6):3112–3123. [PubMed] [Google Scholar]
  15. Groux H., Bigler M., de Vries J. E., Roncarolo M. G. Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells. J Immunol. 1998 Apr 1;160(7):3188–3193. [PubMed] [Google Scholar]
  16. Groux H., Bigler M., de Vries J. E., Roncarolo M. G. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med. 1996 Jul 1;184(1):19–29. doi: 10.1084/jem.184.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herrmann T., Maryanski J. L., Romero P., Fleischer B., MacDonald H. R. Activation of MHC class I-restricted CD8+ CTL by microbial T cell mitogens. Dependence upon MHC class II expression of the target cells and V beta usage of the responder T cells. J Immunol. 1990 Feb 15;144(4):1181–1186. [PubMed] [Google Scholar]
  18. Hom S. S., Topalian S. L., Simonis T., Mancini M., Rosenberg S. A. Common expression of melanoma tumor-associated antigens recognized by human tumor infiltrating lymphocytes: analysis by human lymphocyte antigen restriction. J Immunother (1991) 1991 Jun;10(3):153–164. [PubMed] [Google Scholar]
  19. Kahn M., Sugawara H., McGowan P., Okuno K., Nagoya S., Hellström K. E., Hellström I., Greenberg P. CD4+ T cell clones specific for the human p97 melanoma-associated antigen can eradicate pulmonary metastases from a murine tumor expressing the p97 antigen. J Immunol. 1991 May 1;146(9):3235–3241. [PubMed] [Google Scholar]
  20. Kern D. E., Klarnet J. P., Jensen M. C., Greenberg P. D. Requirement for recognition of class II molecules and processed tumor antigen for optimal generation of syngeneic tumor-specific class I-restricted CTL. J Immunol. 1986 Jun 1;136(11):4303–4310. [PubMed] [Google Scholar]
  21. Klarnet J. P., Kern D. E., Okuno K., Holt C., Lilly F., Greenberg P. D. FBL-reactive CD8+ cytotoxic and CD4+ helper T lymphocytes recognize distinct Friend murine leukemia virus-encoded antigens. J Exp Med. 1989 Feb 1;169(2):457–467. doi: 10.1084/jem.169.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Krieger N. R., Yin D. P., Fathman C. G. CD4+ but not CD8+ cells are essential for allorejection. J Exp Med. 1996 Nov 1;184(5):2013–2018. doi: 10.1084/jem.184.5.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kägi D., Ledermann B., Bürki K., Hengartner H., Zinkernagel R. M. CD8+ T cell-mediated protection against an intracellular bacterium by perforin-dependent cytotoxicity. Eur J Immunol. 1994 Dec;24(12):3068–3072. doi: 10.1002/eji.1830241223. [DOI] [PubMed] [Google Scholar]
  24. Langford M. P., Stanton G. J., Johnson H. M. Biological effects of staphylococcal enterotoxin A on human peripheral lymphocytes. Infect Immun. 1978 Oct;22(1):62–68. doi: 10.1128/iai.22.1.62-68.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee W. T., Vitetta E. S. Memory T cells are anergic to the superantigen staphylococcal enterotoxin B. J Exp Med. 1992 Aug 1;176(2):575–579. doi: 10.1084/jem.176.2.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Litton M. J., Dohlsten M., Hansson J., Rosendahl A., Ohlsson L., Kalland T., Andersson J., Andersson U. Tumor therapy with an antibody-targeted superantigen generates a dichotomy between local and systemic immune responses. Am J Pathol. 1997 May;150(5):1607–1618. [PMC free article] [PubMed] [Google Scholar]
  27. Litton M. J., Dohlsten M., Lando P. A., Kalland T., Ohlsson L., Andersson J., Andersson U. Antibody-targeted superantigen therapy induces tumor-infiltrating lymphocytes, excessive cytokine production, and apoptosis in human colon carcinoma. Eur J Immunol. 1996 Jan;26(1):1–9. doi: 10.1002/eji.1830260102. [DOI] [PubMed] [Google Scholar]
  28. Litton M. J., Sander B., Murphy E., O'Garra A., Abrams J. S. Early expression of cytokines in lymph nodes after treatment in vivo with Staphylococcus enterotoxin B. J Immunol Methods. 1994 Sep 30;175(1):47–58. doi: 10.1016/0022-1759(94)90330-1. [DOI] [PubMed] [Google Scholar]
  29. Oswald I. P., Gazzinelli R. T., Sher A., James S. L. IL-10 synergizes with IL-4 and transforming growth factor-beta to inhibit macrophage cytotoxic activity. J Immunol. 1992 Jun 1;148(11):3578–3582. [PubMed] [Google Scholar]
  30. Pace J. L., Russell S. W. Activation of mouse macrophages for tumor cell killing. I. Quantitative analysis of interactions between lymphokine and lipopolysaccharide. J Immunol. 1981 May;126(5):1863–1867. [PubMed] [Google Scholar]
  31. Rahemtulla A., Fung-Leung W. P., Schilham M. W., Kündig T. M., Sambhara S. R., Narendran A., Arabian A., Wakeham A., Paige C. J., Zinkernagel R. M. Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature. 1991 Sep 12;353(6340):180–184. doi: 10.1038/353180a0. [DOI] [PubMed] [Google Scholar]
  32. Rosenberg S. A., Lotze M. T., Muul L. M., Leitman S., Chang A. E., Ettinghausen S. E., Matory Y. L., Skibber J. M., Shiloni E., Vetto J. T. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med. 1985 Dec 5;313(23):1485–1492. doi: 10.1056/NEJM198512053132327. [DOI] [PubMed] [Google Scholar]
  33. Rosendahl A., Hansson J., Sundstedt A., Kalland T., Dohlsten M. Immune response during tumor therapy with antibody-superantigen fusion proteins. Int J Cancer. 1996 Sep 27;68(1):109–113. doi: 10.1002/(SICI)1097-0215(19960927)68:1<109::AID-IJC19>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  34. Rosendahl A., Kristensson K., Hansson J., Ohlsson L., Kalland T., Dohlsten M. Repeated treatment with antibody-targeted superantigens strongly inhibits tumor growth. Int J Cancer. 1998 Apr 13;76(2):274–283. doi: 10.1002/(sici)1097-0215(19980413)76:2<274::aid-ijc16>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  35. Rosendahl A., Kristensson K., Hansson J., Riesbeck K., Kalland T., Dohlsten M. Perforin and IFN-gamma are involved in the antitumor effects of antibody-targeted superantigens. J Immunol. 1998 Jun 1;160(11):5309–5313. [PubMed] [Google Scholar]
  36. Schmidt-Wolf I. G., Dejbakhsh-Jones S., Ginzton N., Greenberg P., Strober S. T-cell subsets and suppressor cells in human bone marrow. Blood. 1992 Dec 15;80(12):3242–3250. [PubMed] [Google Scholar]
  37. Sher A., Gazzinelli R. T., Oswald I. P., Clerici M., Kullberg M., Pearce E. J., Berzofsky J. A., Mosmann T. R., James S. L., Morse H. C., 3rd Role of T-cell derived cytokines in the downregulation of immune responses in parasitic and retroviral infection. Immunol Rev. 1992 Jun;127:183–204. doi: 10.1111/j.1600-065x.1992.tb01414.x. [DOI] [PubMed] [Google Scholar]
  38. Sundstedt A., Höiden I., Rosendahl A., Kalland T., van Rooijen N., Dohlsten M. Immunoregulatory role of IL-10 during superantigen-induced hyporesponsiveness in vivo. J Immunol. 1997 Jan 1;158(1):180–186. [PubMed] [Google Scholar]
  39. White J., Herman A., Pullen A. M., Kubo R., Kappler J. W., Marrack P. The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell. 1989 Jan 13;56(1):27–35. doi: 10.1016/0092-8674(89)90980-x. [DOI] [PubMed] [Google Scholar]
  40. Willems F., Marchant A., Delville J. P., Gérard C., Delvaux A., Velu T., de Boer M., Goldman M. Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocytes. Eur J Immunol. 1994 Apr;24(4):1007–1009. doi: 10.1002/eji.1830240435. [DOI] [PubMed] [Google Scholar]
  41. Yoshimoto T., Paul W. E. CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med. 1994 Apr 1;179(4):1285–1295. doi: 10.1084/jem.179.4.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. de Waal Malefyt R., Abrams J., Bennett B., Figdor C. G., de Vries J. E. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991 Nov 1;174(5):1209–1220. doi: 10.1084/jem.174.5.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. de Waal Malefyt R., Haanen J., Spits H., Roncarolo M. G., te Velde A., Figdor C., Johnson K., Kastelein R., Yssel H., de Vries J. E. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med. 1991 Oct 1;174(4):915–924. doi: 10.1084/jem.174.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES