Abstract
Rearrangements of NTRK1 proto-oncogene were detected in ‘spontaneous’ papillary thyroid carcinomas with a frequency varying from 5 to 25% in different studies. These rearrangements result in the formation of chimaeric genes composed of the tyrosine kinase domain of NTRK1 fused to 5′ sequences of different genes. To investigate if the NTRK1 gene plays a role in radiation-induced thyroid carcinogenesis, we looked for the presence of NTRK1 -activating rearrangements in 32 human thyroid tumours (16 follicular adenomas, 14 papillary carcinomas and two lymph-node metastases of papillary thyroid carcinomas) from patients who had received external radiation, using the reverse transcription polymerase chain reaction, Southern blot and direct sequencing techniques. These data were compared with those obtained in a series of 28 ‘spontaneous’ benign and malignant thyroid tumours, collected from patients without a history of radiation exposure and four in vitro culture cell lines derived from ‘spontaneous’ thyroid cancers. Our results concerning the radiation-associated tumours showed that only rearrangements between NTRK1 and TPM3 genes (TRK oncogene) were detected in 2/14 papillary carcinomas and in one lymph-node metastasis of one of these papillary thyroid carcinomas. All the radiation-associated adenomas were negative. In the ‘spontaneous’ tumours, only one of the 14 papillary carcinomas and one of the four in vitro culture cell lines, derived from a papillary carcinoma, presented a NTRK1 rearrangement also with the TPM3 gene. Twenty-five of this series of radiation-associated tumours were previously studied for the ras and RET/PTC oncogenes. In conclusion, our data: (a) show that the overall frequency of NTRK1 rearrangements is similar between radiation-associated (2/31: 6%) and ‘spontaneous’ epithelial thyroid tumours (2/32: 6%). The frequency, if we consider exclusively the papillary carcinomas, is in both cases 12%; (b) show that the TRK oncogene plays a role in the development of a minority of radiation-associated papillary thyroid carcinomas but not in adenomas; and (c) confirm that RET/PTC rearrangements are the major genetic alteration associated with ionizing radiation-induced thyroid tumorigenesis. © 2000 Cancer Research Campaign
Keywords: thyroid, ionizing radiation, NTRK1 proto-oncogene, rearrangements, TRK oncogene
Full Text
The Full Text of this article is available as a PDF (180.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beimfohr C., Klugbauer S., Demidchik E. P., Lengfelder E., Rabes H. M. NTRK1 re-arrangement in papillary thyroid carcinomas of children after the Chernobyl reactor accident. Int J Cancer. 1999 Mar 15;80(6):842–847. doi: 10.1002/(sici)1097-0215(19990315)80:6<842::aid-ijc7>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
- Bongarzone I., Fugazzola L., Vigneri P., Mariani L., Mondellini P., Pacini F., Basolo F., Pinchera A., Pilotti S., Pierotti M. A. Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. J Clin Endocrinol Metab. 1996 May;81(5):2006–2009. doi: 10.1210/jcem.81.5.8626874. [DOI] [PubMed] [Google Scholar]
- Bongarzone I., Pierotti M. A., Monzini N., Mondellini P., Manenti G., Donghi R., Pilotti S., Grieco M., Santoro M., Fusco A. High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene. 1989 Dec;4(12):1457–1462. [PubMed] [Google Scholar]
- Bounacer A., Wicker R., Caillou B., Cailleux A. F., Sarasin A., Schlumberger M., Suárez H. G. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene. 1997 Sep;15(11):1263–1273. doi: 10.1038/sj.onc.1200206. [DOI] [PubMed] [Google Scholar]
- Butti M. G., Bongarzone I., Ferraresi G., Mondellini P., Borrello M. G., Pierotti M. A. A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics. 1995 Jul 1;28(1):15–24. doi: 10.1006/geno.1995.1100. [DOI] [PubMed] [Google Scholar]
- Challeton C., Bounacer A., Du Villard J. A., Caillou B., De Vathaire F., Monier R., Schlumberger M., Suárez H. G. Pattern of ras and gsp oncogene mutations in radiation-associated human thyroid tumors. Oncogene. 1995 Aug 3;11(3):601–603. [PubMed] [Google Scholar]
- Challeton C., Branea F., Schlumberger M., Gaillard N., de Vathaire F., Badie C., Antonini P., Parmentier C. Characterization and radiosensitivity at high or low dose rate of four cell lines derived from human thyroid tumors. Int J Radiat Oncol Biol Phys. 1997 Jan 1;37(1):163–169. doi: 10.1016/s0360-3016(96)00449-x. [DOI] [PubMed] [Google Scholar]
- Conard R. A., Dobyns B. M., Sutow W. W. Thyroid neoplasia as late effect of exposure to radioactive iodine in fallout. JAMA. 1970 Oct 12;214(2):316–324. [PubMed] [Google Scholar]
- DUFFY B. J., Jr, FITZGERALD P. J. Cancer of the thyroid in children: a report of 28 cases. J Clin Endocrinol Metab. 1950 Oct;10(10):1296–1308. doi: 10.1210/jcem-10-10-1296. [DOI] [PubMed] [Google Scholar]
- Delvincourt C., Patey M., Flament J. B., Suarez H. G., Larbre H., Jardillier J. C., Delisle M. J. Ret and trk proto-oncogene activation in thyroid papillary carcinomas in French patients from the Champagne-Ardenne region. Clin Biochem. 1996 Jun;29(3):267–271. doi: 10.1016/0009-9120(96)00006-9. [DOI] [PubMed] [Google Scholar]
- Diallo I., Lamon A., Shamsaldin A., Grimaud E., de Vathaire F., Chavaudra J. Estimation of the radiation dose delivered to any point outside the target volume per patient treated with external beam radiotherapy. Radiother Oncol. 1996 Mar;38(3):269–271. doi: 10.1016/0167-8140(96)01713-6. [DOI] [PubMed] [Google Scholar]
- Fogelfeld L., Bauer T. K., Schneider A. B., Swartz J. E., Zitman R. p53 gene mutations in radiation-induced thyroid cancer. J Clin Endocrinol Metab. 1996 Aug;81(8):3039–3044. doi: 10.1210/jcem.81.8.8768871. [DOI] [PubMed] [Google Scholar]
- Fugazzola L., Pilotti S., Pinchera A., Vorontsova T. V., Mondellini P., Bongarzone I., Greco A., Astakhova L., Butti M. G., Demidchik E. P. Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res. 1995 Dec 1;55(23):5617–5620. [PubMed] [Google Scholar]
- Greco A., Mariani C., Miranda C., Lupas A., Pagliardini S., Pomati M., Pierotti M. A. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol. 1995 Nov;15(11):6118–6127. doi: 10.1128/mcb.15.11.6118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greco A., Pierotti M. A., Bongarzone I., Pagliardini S., Lanzi C., Della Porta G. TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene. 1992 Feb;7(2):237–242. [PubMed] [Google Scholar]
- Hedinger C., Williams E. D., Sobin L. H. The WHO histological classification of thyroid tumors: a commentary on the second edition. Cancer. 1989 Mar 1;63(5):908–911. doi: 10.1002/1097-0142(19890301)63:5<908::aid-cncr2820630520>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
- Ito T., Seyama T., Iwamoto K. S., Mizuno T., Tronko N. D., Komissarenko I. V., Cherstovoy E. D., Satow Y., Takeichi N., Dohi K. Activated RET oncogene in thyroid cancers of children from areas contaminated by Chernobyl accident. Lancet. 1994 Jul 23;344(8917):259–259. doi: 10.1016/s0140-6736(94)93024-4. [DOI] [PubMed] [Google Scholar]
- Kaplan D. R., Hempstead B. L., Martin-Zanca D., Chao M. V., Parada L. F. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science. 1991 Apr 26;252(5005):554–558. doi: 10.1126/science.1850549. [DOI] [PubMed] [Google Scholar]
- Kazakov V. S., Demidchik E. P., Astakhova L. N. Thyroid cancer after Chernobyl. Nature. 1992 Sep 3;359(6390):21–21. doi: 10.1038/359021a0. [DOI] [PubMed] [Google Scholar]
- Klein R., Jing S. Q., Nanduri V., O'Rourke E., Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991 Apr 5;65(1):189–197. doi: 10.1016/0092-8674(91)90419-y. [DOI] [PubMed] [Google Scholar]
- Klugbauer S., Lengfelder E., Demidchik E. P., Rabes H. M. High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident. Oncogene. 1995 Dec 21;11(12):2459–2467. [PubMed] [Google Scholar]
- Martin-Zanca D., Barbacid M., Parada L. F. Expression of the trk proto-oncogene is restricted to the sensory cranial and spinal ganglia of neural crest origin in mouse development. Genes Dev. 1990 May;4(5):683–694. doi: 10.1101/gad.4.5.683. [DOI] [PubMed] [Google Scholar]
- Martin-Zanca D., Hughes S. H., Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. 1986 Feb 27-Mar 5Nature. 319(6056):743–748. doi: 10.1038/319743a0. [DOI] [PubMed] [Google Scholar]
- Martin-Zanca D., Oskam R., Mitra G., Copeland T., Barbacid M. Molecular and biochemical characterization of the human trk proto-oncogene. Mol Cell Biol. 1989 Jan;9(1):24–33. doi: 10.1128/mcb.9.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michelin S., Daya-Grosjean L., Sureau F., Saïd S., Sarasin A., Suárez H. G. Characterization of a c-met proto-oncogene activated in human xeroderma pigmentosum cells after treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Oncogene. 1993 Jul;8(7):1983–1991. [PubMed] [Google Scholar]
- Nikiforov Y. E., Nikiforova M. N., Gnepp D. R., Fagin J. A. Prevalence of mutations of ras and p53 in benign and malignant thyroid tumors from children exposed to radiation after the Chernobyl nuclear accident. Oncogene. 1996 Aug 15;13(4):687–693. [PubMed] [Google Scholar]
- Nikiforov Y. E., Rowland J. M., Bove K. E., Monforte-Munoz H., Fagin J. A. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997 May 1;57(9):1690–1694. [PubMed] [Google Scholar]
- Park M., Dean M., Cooper C. S., Schmidt M., O'Brien S. J., Blair D. G., Vande Woude G. F. Mechanism of met oncogene activation. Cell. 1986 Jun 20;45(6):895–904. doi: 10.1016/0092-8674(86)90564-7. [DOI] [PubMed] [Google Scholar]
- Roth D. B., Lindahl T., Gellert M. Repair and recombination. How to make ends meet. Curr Biol. 1995 May 1;5(5):496–499. doi: 10.1016/s0960-9822(95)00101-1. [DOI] [PubMed] [Google Scholar]
- Said S., Schlumberger M., Suarez H. G. Oncogenes and anti-oncogenes in human epithelial thyroid tumors. J Endocrinol Invest. 1994 May;17(5):371–379. doi: 10.1007/BF03349004. [DOI] [PubMed] [Google Scholar]
- Santoro M., Melillo R. M., Grieco M., Berlingieri M. T., Vecchio G., Fusco A. The TRK and RET tyrosine kinase oncogenes cooperate with ras in the neoplastic transformation of a rat thyroid epithelial cell line. Cell Growth Differ. 1993 Feb;4(2):77–84. [PubMed] [Google Scholar]
- Shore R. E., Woodard E., Hildreth N., Dvoretsky P., Hempelmann L., Pasternack B. Thyroid tumors following thymus irradiation. J Natl Cancer Inst. 1985 Jun;74(6):1177–1184. [PubMed] [Google Scholar]
- Suarez H. G., du Villard J. A., Caillou B., Schlumberger M., Parmentier C., Monier R. gsp mutations in human thyroid tumours. Oncogene. 1991 Apr;6(4):677–679. [PubMed] [Google Scholar]
- Suarez H. G., du Villard J. A., Severino M., Caillou B., Schlumberger M., Tubiana M., Parmentier C., Monier R. Presence of mutations in all three ras genes in human thyroid tumors. Oncogene. 1990 Apr;5(4):565–570. [PubMed] [Google Scholar]
- Viglietto G., Chiappetta G., Martinez-Tello F. J., Fukunaga F. H., Tallini G., Rigopoulou D., Visconti R., Mastro A., Santoro M., Fusco A. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene. 1995 Sep 21;11(6):1207–1210. [PubMed] [Google Scholar]
- Wajjwalku W., Nakamura S., Hasegawa Y., Miyazaki K., Satoh Y., Funahashi H., Matsuyama M., Takahashi M. Low frequency of rearrangements of the ret and trk proto-oncogenes in Japanese thyroid papillary carcinomas. Jpn J Cancer Res. 1992 Jul;83(7):671–675. doi: 10.1111/j.1349-7006.1992.tb01963.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weier H. U., Rhein A. P., Shadravan F., Collins C., Polikoff D. Rapid physical mapping of the human trk protooncogene (NTRK1) to human chromosome 1q21-q22 by P1 clone selection, fluorescence in situ hybridization (FISH), and computer-assisted microscopy. Genomics. 1995 Mar 20;26(2):390–393. doi: 10.1016/0888-7543(95)80226-c. [DOI] [PubMed] [Google Scholar]
- Wright P. A., Williams E. D., Lemoine N. R., Wynford-Thomas D. Radiation-associated and 'spontaneous' human thyroid carcinomas show a different pattern of ras oncogene mutation. Oncogene. 1991 Mar;6(3):471–473. [PubMed] [Google Scholar]