Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 2000 Nov 22;83(11):1544–1551. doi: 10.1054/bjoc.2000.1486

Biodistribution of charged 17.1A photoimmunoconjugates in a murine model of hepatic metastasis of colorectal cancer

M R Hamblin 1, M Del Governatore 1,2, I Rizvi 1, T Hasan 1
PMCID: PMC2363424  PMID: 11076666

Abstract

Optimizing photodynamic therapy involves attempting to increase both the absolute tumour content of photosensitizer and the selectivity between tumour and surrounding normal tissue. One reason why photodynamic therapy has not been considered suitable for treatment of metastatic tumours in the liver, is the poor selectivity of conventional photosensitizers for tumour compared to normal liver. This report details an alternative approach to increasing this selectivity by the use of antibody-targeted photosensitizers (or photoimmunoconjugates) to target intrahepatic tumours caused by human colorectal cancer cells in the nude mouse, and explores the role of molecular charge on the tumour-targeting efficiency of macromolecules. The murine monoclonal antibody 17.1A (which recognizes an antigen expressed on HT 29 cells) was used to prepare site-specific photoimmunoconjugates with the photosensitizer chlorine6. The conjugates had either a predominant cationic or anionic charge and were injected i.v. into tumour-bearing mice. Biodistribution 3 or 24 h later was measured by extraction of tissue samples and quantitation of chlorine6 content by fluorescence spectroscopy. The photoimmunoconjugates were compared to the polylysine conjugates in an attempt to define the effect of molecular charge as well as antibody targeting. The anionic 17.1A conjugate delivered more than twice as much photosensitizer to the tumour at 3 h than other species (5 times more than the cationic 17.1A conjugate) and had a tumour:normal liver ratio of 2.5. Tumour-to-liver ratios were greater than one for most compounds at 3 h but declined at 24 h. Tumour-to-skin ratios were high (> 38) for all conjugates but not for free chlorine6. Cationic species had a high uptake in the lungs compared to anionic species. The photoimmunoconjugates show an advantage over literature reports of other photosensitizers, which can result in tumour:normal liver ratios of less than 1. © 2000 Cancer Research Campaign http://www.bjcancer.com

Keywords: photodynamic therapy, photoimmunotherapy, monoclonal antibody, photosensitizer, polylysine, intraperitoneal PDT

Full Text

The Full Text of this article is available as a PDF (320.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baas P., van Mansom I., van Tinteren H., Stewart F. A., van Zandwijk N. Effect of N-acetylcysteïne on Photofrin-induced skin photosensitivity in patients. Lasers Surg Med. 1995;16(4):359–367. doi: 10.1002/lsm.1900160407. [DOI] [PubMed] [Google Scholar]
  2. Del Governatore M., Hamblin M. R., Piccinini E. E., Ugolini G., Hasan T. Targeted photodestruction of human colon cancer cells using charged 17.1A chlorin e6 immunoconjugates. Br J Cancer. 2000 Jan;82(1):56–64. doi: 10.1054/bjoc.1999.0877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Del Governatore M., Hamblin M. R., Shea C. R., Rizvi I., Molpus K. G., Tanabe K. K., Hasan T. Experimental photoimmunotherapy of hepatic metastases of colorectal cancer with a 17.1A chlorin(e6) immunoconjugate. Cancer Res. 2000 Aug 1;60(15):4200–4205. [PubMed] [Google Scholar]
  4. Dougherty T. J., Gomer C. J., Henderson B. W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. Photodynamic therapy. J Natl Cancer Inst. 1998 Jun 17;90(12):889–905. doi: 10.1093/jnci/90.12.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duewell S., Horst W., Westera G. Uptake of a monoclonal antibody against CEA (Tumak 431/31) in a human colon tumor (Co-112) xenografted in the nude mouse. Dependence on tumor size and injected dose. Cancer Immunol Immunother. 1986;23(2):101–106. doi: 10.1007/BF00199814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duska L. R., Hamblin M. R., Bamberg M. P., Hasan T. Biodistribution of charged F(ab')2 photoimmunoconjugates in a xenograft model of ovarian cancer. Br J Cancer. 1997;75(6):837–844. doi: 10.1038/bjc.1997.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ekrami H., Kennedy A. R., Shen W. C. Disposition of positively charged Bowman-Birk protease inhibitor conjugates in mice: influence of protein conjugate charge density and size on lung targeting. J Pharm Sci. 1995 Apr;84(4):456–461. doi: 10.1002/jps.2600840413. [DOI] [PubMed] [Google Scholar]
  8. Goff B. A., Blake J., Bamberg M. P., Hasan T. Treatment of ovarian cancer with photodynamic therapy and immunoconjugates in a murine ovarian cancer model. Br J Cancer. 1996 Oct;74(8):1194–1198. doi: 10.1038/bjc.1996.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goff B. A., Hermanto U., Rumbaugh J., Blake J., Bamberg M., Hasan T. Photoimmunotherapy and biodistribution with an OC125-chlorin immunoconjugate in an in vivo murine ovarian cancer model. Br J Cancer. 1994 Sep;70(3):474–480. doi: 10.1038/bjc.1994.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Göttlinger H. G., Funke I., Johnson J. P., Gokel J. M., Riethmüller G. The epithelial cell surface antigen 17-1A, a target for antibody-mediated tumor therapy: its biochemical nature, tissue distribution and recognition by different monoclonal antibodies. Int J Cancer. 1986 Jul 15;38(1):47–53. doi: 10.1002/ijc.2910380109. [DOI] [PubMed] [Google Scholar]
  11. Hamblin M. R., Miller J. L., Hasan T. Effect of charge on the interaction of site-specific photoimmunoconjugates with human ovarian cancer cells. Cancer Res. 1996 Nov 15;56(22):5205–5210. [PubMed] [Google Scholar]
  12. Kornguth S. E., Kalinke T., Robins H. I., Cohen J. D., Turski P. Preferential binding of radiolabeled poly-L-lysines to C6 and U87 MG glioblastomas compared with endothelial cells in vitro. Cancer Res. 1989 Nov 15;49(22):6390–6395. [PubMed] [Google Scholar]
  13. Litvinov S. V., Velders M. P., Bakker H. A., Fleuren G. J., Warnaar S. O. Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol. 1994 Apr;125(2):437–446. doi: 10.1083/jcb.125.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meredith R. F., Khazaeli M. B., Plott W. E., Spencer S. A., Wheeler R. H., Brady L. W., Woo D. V., LoBuglio A. F. Initial clinical evaluation of iodine-125-labeled chimeric 17-1A for metastatic colon cancer. J Nucl Med. 1995 Dec;36(12):2229–2233. [PubMed] [Google Scholar]
  15. Mew D., Wat C. K., Towers G. H., Levy J. G. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol. 1983 Mar;130(3):1473–1477. [PubMed] [Google Scholar]
  16. Nieroda C. A., Mojzisik C., Hinkle G., Thurston M. O., Martin E. W., Jr Radioimmunoguided surgery (RIGS) in recurrent colorectal cancer. Cancer Detect Prev. 1991;15(3):225–229. [PubMed] [Google Scholar]
  17. Nishiwaki Y., Nakamura S., Sakaguchi S. New method of photosensitizer accumulation for photodynamic therapy in an experimental liver tumor. Lasers Surg Med. 1989;9(3):254–263. doi: 10.1002/lsm.1900090308. [DOI] [PubMed] [Google Scholar]
  18. Orenstein A., Kostenich G., Roitman L., Shechtman Y., Kopolovic Y., Ehrenberg B., Malik Z. A comparative study of tissue distribution and photodynamic therapy selectivity of chlorin e6, Photofrin II and ALA-induced protoporphyrin IX in a colon carcinoma model. Br J Cancer. 1996 Apr;73(8):937–944. doi: 10.1038/bjc.1996.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pardridge W. M., Buciak J., Yang J., Wu D. Enhanced endocytosis in cultured human breast carcinoma cells and in vivo biodistribution in rats of a humanized monoclonal antibody after cationization of the protein. J Pharmacol Exp Ther. 1998 Jul;286(1):548–554. [PubMed] [Google Scholar]
  20. Riethmüller G., Schneider-Gädicke E., Schlimok G., Schmiegel W., Raab R., Höffken K., Gruber R., Pichlmaier H., Hirche H., Pichlmayr R. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes' C colorectal carcinoma. German Cancer Aid 17-1A Study Group. Lancet. 1994 May 14;343(8907):1177–1183. doi: 10.1016/s0140-6736(94)92398-1. [DOI] [PubMed] [Google Scholar]
  21. Rougier P. Are there indications for intraarterial hepatic chemotherapy or isolated liver perfusion? The case of liver metastases from colorectal cancer. Recent Results Cancer Res. 1998;147:3–12. doi: 10.1007/978-3-642-80460-1_1. [DOI] [PubMed] [Google Scholar]
  22. Sato N., Saga T., Sakahara H., Yao Z., Nakamoto Y., Zhang M., Kuroki M., Matsuoka Y., Iida Y., Konishi J. Intratumoral distribution of radiolabeled antibody and radioimmunotherapy in experimental liver metastases model of nude mouse. J Nucl Med. 1999 Apr;40(4):685–692. [PubMed] [Google Scholar]
  23. Schmidt S., Wagner U., Oehr P., Krebs D. Klinischer Einsatz der photodynamischen Therapie bei gynäkologischen Tumorpatienten--Antikörper-vermittelte photodynamische Lasertherapie als neues onkologisches Behandlungsverfahren. Zentralbl Gynakol. 1992;114(6):307–311. [PubMed] [Google Scholar]
  24. Schmidt S., Wagner U., Schultes B., Oehr P., Decleer W., Ertmer W., Lubaschowski H., Biersack H. J., Krebs D. Photodynamische Lasertherapie mit antikörpergebundenen Farbstoffen. Ein neues Verfahren zur Therapie gynäkologischer Malignome. Fortschr Med. 1992 Jun 10;110(16):298–301. [PubMed] [Google Scholar]
  25. Steele G., Jr, Ravikumar T. S. Resection of hepatic metastases from colorectal cancer. Biologic perspective. Ann Surg. 1989 Aug;210(2):127–138. doi: 10.1097/00000658-198908000-00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tralau C. J., Young A. R., Walker N. P., Vernon D. I., MacRobert A. J., Brown S. B., Bown S. G. Mouse skin photosensitivity with dihaematoporphyrin ether (DHE) and aluminium sulphonated phthalocyanine (AlSPc): a comparative study. Photochem Photobiol. 1989 Mar;49(3):305–312. doi: 10.1111/j.1751-1097.1989.tb04111.x. [DOI] [PubMed] [Google Scholar]
  27. Van Hillegersberg R., Van den Berg J. W., Kort W. J., Terpstra O. T., Wilson J. H. Selective accumulation of endogenously produced porphyrins in a liver metastasis model in rats. Gastroenterology. 1992 Aug;103(2):647–651. doi: 10.1016/0016-5085(92)90860-2. [DOI] [PubMed] [Google Scholar]
  28. Weagle G., Paterson P. E., Kennedy J., Pottier R. The nature of the chromophore responsible for naturally occurring fluorescence in mouse skin. J Photochem Photobiol B. 1988 Nov;2(3):313–320. doi: 10.1016/1011-1344(88)85051-6. [DOI] [PubMed] [Google Scholar]
  29. Woodburn K. W., Stylli S., Hill J. S., Kaye A. H., Reiss J. A., Phillips D. R. Evaluation of tumour and tissue distribution of porphyrins for use in photodynamic therapy. Br J Cancer. 1992 Mar;65(3):321–328. doi: 10.1038/bjc.1992.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yarmush M. L., Thorpe W. P., Strong L., Rakestraw S. L., Toner M., Tompkins R. G. Antibody Targeted Photolysis. Crit Rev Ther Drug Carrier Syst. 1993;10(3):197–252. [PubMed] [Google Scholar]
  31. van Hillegersberg R., Marijnissen J. P., Kort W. J., Zondervan P. E., Terpstra O. T., Star W. M. Interstitial photodynamic therapy in a rat liver metastasis model. Br J Cancer. 1992 Dec;66(6):1005–1014. doi: 10.1038/bjc.1992.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Hillegersberg R., Pickering J. W., Aalders M., Beek J. F. Optical properties of rat liver and tumor at 633 nm and 1064 nm: photofrin enhances scattering. Lasers Surg Med. 1993;13(1):31–39. doi: 10.1002/lsm.1900130108. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES