Abstract
Atherosclerosis is a chronic inflammatory process in the intima of conduit arteries, which disturbs the endothelium-dependent regulation of the vascular tone by the labile liposoluble radical nitric oxide (NO) formed by the constitutive endothelial nitric oxide synthase (eNOS). This defect predisposes to coronary vasospasm and cardiac ischaemia, with anginal pain as the typical clinical manifestation. It is now appreciated that endothelial dysfunction is an early event in atherogenesis and that it may also involve the microcirculation, in which atherosclerotic lesions do not develop. On the other hand, the inflammatory environment in atherosclerotic plaques may result in the expression of the inducible NO synthase (iNOS) isozyme. Whether the dysfunction in endothelial NO production is causal to, or the result of, atherosclerotic lesion formation is still highly debated. Most evidence supports the hypothesis that constitutive endothelial NO release protects against atherogenesis e.g. by preventing smooth muscle cell proliferation and leukocyte adhesion. Nitric oxide generated by the inducible isozyme may be beneficial by replacing the failing endothelial production but excessive release may damage the vascular wall cells, especially in combination with reactive oxygen intermediates.
Full Text
The Full Text of this article is available as a PDF (460.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahamsson T., Brandt U., Marklund S. L., Sjöqvist P. O. Vascular bound recombinant extracellular superoxide dismutase type C protects against the detrimental effects of superoxide radicals on endothelium-dependent arterial relaxation. Circ Res. 1992 Feb;70(2):264–271. doi: 10.1161/01.res.70.2.264. [DOI] [PubMed] [Google Scholar]
- Albina J. E., Cui S., Mateo R. B., Reichner J. S. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol. 1993 Jun 1;150(11):5080–5085. [PubMed] [Google Scholar]
- Bassenge E. Antiplatelet effects of endothelium-derived relaxing factor and nitric oxide donors. Eur Heart J. 1991 Nov;12 (Suppl E):12–15. doi: 10.1093/eurheartj/12.suppl_e.12. [DOI] [PubMed] [Google Scholar]
- Bath P. M., Hassall D. G., Gladwin A. M., Palmer R. M., Martin J. F. Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb. 1991 Mar-Apr;11(2):254–260. doi: 10.1161/01.atv.11.2.254. [DOI] [PubMed] [Google Scholar]
- Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beckmann J. S., Ye Y. Z., Anderson P. G., Chen J., Accavitti M. A., Tarpey M. M., White C. R. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler. 1994 Feb;375(2):81–88. doi: 10.1515/bchm3.1994.375.2.81. [DOI] [PubMed] [Google Scholar]
- Beetens J. R., Coene M. C., Veheyen A., Zonnekeyn L., Herman A. G. Vitamin C increases the prostacyclin production and decreases the vascular lesions in experimental atherosclerosis in rabbits. Prostaglandins. 1986 Sep;32(3):335–352. doi: 10.1016/0090-6980(86)90003-1. [DOI] [PubMed] [Google Scholar]
- Beetens J. R., Coene M. C., Verheyen A., Zonnekeyn L., Herman A. G. Biphasic response of intimal prostacyclin production during the development of experimental atherosclerosis. Prostaglandins. 1986 Sep;32(3):319–334. doi: 10.1016/0090-6980(86)90002-x. [DOI] [PubMed] [Google Scholar]
- Berkenboom G., Depierreux M., Fontaine J. The influence of atherosclerosis on the mechanical responses of human isolated coronary arteries to substance P, isoprenaline and noradrenaline. Br J Pharmacol. 1987 Sep;92(1):113–120. doi: 10.1111/j.1476-5381.1987.tb11302.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berrazueta J. R., Salas E., Amado J. A., Sánchez de Vega M. J., Poveda J. J. Induction of nitric oxide synthase in human mammary arteries in vitro. Eur J Pharmacol. 1994 Jan 14;251(2-3):303–305. doi: 10.1016/0014-2999(94)90414-6. [DOI] [PubMed] [Google Scholar]
- Bialecki R. A., Tulenko T. N. Acute exposure to cholesterol increases arterial nitroprusside- and endothelium-mediated relaxation. Am J Physiol. 1993 Jan;264(1 Pt 1):C32–C39. doi: 10.1152/ajpcell.1993.264.1.C32. [DOI] [PubMed] [Google Scholar]
- Bochaton-Piallat M. L., Gabbiani F., Redard M., Desmoulière A., Gabbiani G. Apoptosis participates in cellularity regulation during rat aortic intimal thickening. Am J Pathol. 1995 May;146(5):1059–1064. [PMC free article] [PubMed] [Google Scholar]
- Bode-Böger S. M., Böger R. H., Alfke H., Heinzel D., Tsikas D., Creutzig A., Alexander K., Frölich J. C. L-arginine induces nitric oxide-dependent vasodilation in patients with critical limb ischemia. A randomized, controlled study. Circulation. 1996 Jan 1;93(1):85–90. doi: 10.1161/01.cir.93.1.85. [DOI] [PubMed] [Google Scholar]
- Bode-Böger S. M., Böger R. H., Creutzig A., Tsikas D., Gutzki F. M., Alexander K., Frölich J. C. L-arginine infusion decreases peripheral arterial resistance and inhibits platelet aggregation in healthy subjects. Clin Sci (Lond) 1994 Sep;87(3):303–310. doi: 10.1042/cs0870303. [DOI] [PubMed] [Google Scholar]
- Bolton E. J., Jessup W., Stanley K. K., Dean R. T. Enhanced LDL oxidation by murine macrophage foam cells and their failure to secrete nitric oxide. Atherosclerosis. 1994 Apr;106(2):213–223. doi: 10.1016/0021-9150(94)90126-0. [DOI] [PubMed] [Google Scholar]
- Bossaller C., Habib G. B., Yamamoto H., Williams C., Wells S., Henry P. D. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5'-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest. 1987 Jan;79(1):170–174. doi: 10.1172/JCI112779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bossaller C., Hehlert-Friedrich C., Jost S., Rafflenbeul W., Lichtlen P. Angiographic assessment of human coronary artery endothelial function by measurement of endothelium-dependent vasodilation. Eur Heart J. 1989 Nov;10 (Suppl F):44–48. doi: 10.1093/eurheartj/10.suppl_f.44. [DOI] [PubMed] [Google Scholar]
- Boulanger C., Lüscher T. F. Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest. 1990 Feb;85(2):587–590. doi: 10.1172/JCI114477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunner F., Stessel H., Kukovetz W. R. Novel guanylyl cyclase inhibitor, ODQ reveals role of nitric oxide, but not of cyclic GMP in endothelin-1 secretion. FEBS Lett. 1995 Dec 4;376(3):262–266. doi: 10.1016/0014-5793(95)01297-x. [DOI] [PubMed] [Google Scholar]
- Buga G. M., Griscavage J. M., Rogers N. E., Ignarro L. J. Negative feedback regulation of endothelial cell function by nitric oxide. Circ Res. 1993 Nov;73(5):808–812. doi: 10.1161/01.res.73.5.808. [DOI] [PubMed] [Google Scholar]
- Bult H., De Meyer G. R., Herman A. G. Influence of chronic treatment with a nitric oxide donor on fatty streak development and reactivity of the rabbit aorta. Br J Pharmacol. 1995 Apr;114(7):1371–1382. doi: 10.1111/j.1476-5381.1995.tb13358.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Busse R., Mülsch A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett. 1990 Nov 26;275(1-2):87–90. doi: 10.1016/0014-5793(90)81445-t. [DOI] [PubMed] [Google Scholar]
- Buttery L. D., Springall D. R., Chester A. H., Evans T. J., Standfield E. N., Parums D. V., Yacoub M. H., Polak J. M. Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Lab Invest. 1996 Jul;75(1):77–85. [PubMed] [Google Scholar]
- Böger R. H., Bode-Böger S. M., Gerecke U., Frölich J. C. Long-term administration of L-arginine, L-NAME, and the exogenous NO donor molsidomine modulates urinary nitrate and cGMP excretion in rats. Cardiovasc Res. 1994 Apr;28(4):494–499. doi: 10.1093/cvr/28.4.494. [DOI] [PubMed] [Google Scholar]
- Böger R. H., Bode-Böger S. M., Mügge A., Kienke S., Brandes R., Dwenger A., Frölich J. C. Supplementation of hypercholesterolaemic rabbits with L-arginine reduces the vascular release of superoxide anions and restores NO production. Atherosclerosis. 1995 Oct;117(2):273–284. doi: 10.1016/0021-9150(95)05582-h. [DOI] [PubMed] [Google Scholar]
- Casino P. R., Kilcoyne C. M., Cannon R. O., 3rd, Quyyumi A. A., Panza J. A. Impaired endothelium-dependent vascular relaxation in patients with hypercholesterolemia extends beyond the muscarinic receptor. Am J Cardiol. 1995 Jan 1;75(1):40–44. doi: 10.1016/s0002-9149(99)80524-4. [DOI] [PubMed] [Google Scholar]
- Casino P. R., Kilcoyne C. M., Quyyumi A. A., Hoeg J. M., Panza J. A. Investigation of decreased availability of nitric oxide precursor as the mechanism responsible for impaired endothelium-dependent vasodilation in hypercholesterolemic patients. J Am Coll Cardiol. 1994 Mar 15;23(4):844–850. doi: 10.1016/0735-1097(94)90628-9. [DOI] [PubMed] [Google Scholar]
- Cayatte A. J., Palacino J. J., Horten K., Cohen R. A. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb. 1994 May;14(5):753–759. doi: 10.1161/01.atv.14.5.753. [DOI] [PubMed] [Google Scholar]
- Celermajer D. S., Sorensen K. E., Gooch V. M., Spiegelhalter D. J., Miller O. I., Sullivan I. D., Lloyd J. K., Deanfield J. E. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992 Nov 7;340(8828):1111–1115. doi: 10.1016/0140-6736(92)93147-f. [DOI] [PubMed] [Google Scholar]
- Chang G. J., Woo P., Honda H. M., Ignarro L. J., Young L., Berliner J. A., Demer L. L. Oxidation of LDL to a biologically active form by derivatives of nitric oxide and nitrite in the absence of superoxide. Dependence on pH and oxygen. Arterioscler Thromb. 1994 Nov;14(11):1808–1814. doi: 10.1161/01.atv.14.11.1808. [DOI] [PubMed] [Google Scholar]
- Chappell S. P., Lewis M. J., Henderson A. H. Effect of lipid feeding on endothelium dependent relaxation in rabbit aortic preparations. Cardiovasc Res. 1987 Jan;21(1):34–38. doi: 10.1093/cvr/21.1.34. [DOI] [PubMed] [Google Scholar]
- Chester A. H., O'Neil G. S., Moncada S., Tadjkarimi S., Yacoub M. H. Low basal and stimulated release of nitric oxide in atherosclerotic epicardial coronary arteries. Lancet. 1990 Oct 13;336(8720):897–900. doi: 10.1016/0140-6736(90)92269-n. [DOI] [PubMed] [Google Scholar]
- Chin J. H., Azhar S., Hoffman B. B. Inactivation of endothelial derived relaxing factor by oxidized lipoproteins. J Clin Invest. 1992 Jan;89(1):10–18. doi: 10.1172/JCI115549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clancy R. M., Leszczynska-Piziak J., Abramson S. B. Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest. 1992 Sep;90(3):1116–1121. doi: 10.1172/JCI115929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cocks T. M., Angus J. A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature. 1983 Oct 13;305(5935):627–630. doi: 10.1038/305627a0. [DOI] [PubMed] [Google Scholar]
- Cohen R. A., Shepherd J. T., Vanhoutte P. M. Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science. 1983 Jul 15;221(4607):273–274. doi: 10.1126/science.6574604. [DOI] [PubMed] [Google Scholar]
- Cohen R. A., Zitnay K. M., Haudenschild C. C., Cunningham L. D. Loss of selective endothelial cell vasoactive functions caused by hypercholesterolemia in pig coronary arteries. Circ Res. 1988 Nov;63(5):903–910. doi: 10.1161/01.res.63.5.903. [DOI] [PubMed] [Google Scholar]
- Colasanti M., Persichini T., Menegazzi M., Mariotto S., Giordano E., Caldarera C. M., Sogos V., Lauro G. M., Suzuki H. Induction of nitric oxide synthase mRNA expression. Suppression by exogenous nitric oxide. J Biol Chem. 1995 Nov 10;270(45):26731–26733. doi: 10.1074/jbc.270.45.26731. [DOI] [PubMed] [Google Scholar]
- Collins T. Endothelial nuclear factor-kappa B and the initiation of the atherosclerotic lesion. Lab Invest. 1993 May;68(5):499–508. [PubMed] [Google Scholar]
- Cooke J. P., Andon N. A., Girerd X. J., Hirsch A. T., Creager M. A. Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta. Circulation. 1991 Mar;83(3):1057–1062. doi: 10.1161/01.cir.83.3.1057. [DOI] [PubMed] [Google Scholar]
- Cooke J. P., Singer A. H., Tsao P., Zera P., Rowan R. A., Billingham M. E. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest. 1992 Sep;90(3):1168–1172. doi: 10.1172/JCI115937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornwell T. L., Arnold E., Boerth N. J., Lincoln T. M. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol. 1994 Nov;267(5 Pt 1):C1405–C1413. doi: 10.1152/ajpcell.1994.267.5.C1405. [DOI] [PubMed] [Google Scholar]
- Cox D. A., Vita J. A., Treasure C. B., Fish R. D., Alexander R. W., Ganz P., Selwyn A. P. Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation. 1989 Sep;80(3):458–465. doi: 10.1161/01.cir.80.3.458. [DOI] [PubMed] [Google Scholar]
- Creager M. A., Cooke J. P., Mendelsohn M. E., Gallagher S. J., Coleman S. M., Loscalzo J., Dzau V. J. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest. 1990 Jul;86(1):228–234. doi: 10.1172/JCI114688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creager M. A., Gallagher S. J., Girerd X. J., Coleman S. M., Dzau V. J., Cooke J. P. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest. 1992 Oct;90(4):1248–1253. doi: 10.1172/JCI115987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darley-Usmar V. M., Hogg N., O'Leary V. J., Wilson M. T., Moncada S. The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Radic Res Commun. 1992;17(1):9–20. doi: 10.3109/10715769209061085. [DOI] [PubMed] [Google Scholar]
- Davis M. G., Dalen H., Austerheim A. M., Gulbrandsen T. F., Svendsen E., Hagen P. O. Suppression of intimal hyperplasia in experimental vein grafts by oral l-arginine supplementation and single ex vivo immersion in deferoxamine manganese. J Vasc Surg. 1996 Mar;23(3):410–420. doi: 10.1016/s0741-5214(96)80005-x. [DOI] [PubMed] [Google Scholar]
- De Caterina R., Libby P., Peng H. B., Thannickal V. J., Rajavashisth T. B., Gimbrone M. A., Jr, Shin W. S., Liao J. K. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest. 1995 Jul;96(1):60–68. doi: 10.1172/JCI118074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Meyer G. R., Bult H., Ustünes L., Kockx M. M., Feelisch M., Herman A. G. Effect of nitric oxide donors on neointima formation and vascular reactivity in the collared carotid artery of rabbits. J Cardiovasc Pharmacol. 1995 Aug;26(2):272–279. doi: 10.1097/00005344-199508000-00013. [DOI] [PubMed] [Google Scholar]
- Del Boccio G., Lapenna D., Porreca E., Pennelli A., Savini F., Feliciani P., Ricci G., Cuccurullo F. Aortic antioxidant defence mechanisms: time-related changes in cholesterol-fed rabbits. Atherosclerosis. 1990 Mar;81(2):127–135. doi: 10.1016/0021-9150(90)90019-f. [DOI] [PubMed] [Google Scholar]
- Deliconstantinos G., Villiotou V., Stavrides J. C. Modulation of particulate nitric oxide synthase activity and peroxynitrite synthesis in cholesterol enriched endothelial cell membranes. Biochem Pharmacol. 1995 May 26;49(11):1589–1600. doi: 10.1016/0006-2952(95)00094-g. [DOI] [PubMed] [Google Scholar]
- Denis M. Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. J Leukoc Biol. 1991 Apr;49(4):380–387. doi: 10.1002/jlb.49.4.380. [DOI] [PubMed] [Google Scholar]
- Douglas S. A., Vickery-Clark L. M., Ohlstein E. H. Functional evidence that balloon angioplasty results in transient nitric oxide synthase induction. Eur J Pharmacol. 1994 Apr 1;255(1-3):81–89. doi: 10.1016/0014-2999(94)90085-x. [DOI] [PubMed] [Google Scholar]
- Drexler H., Zeiher A. M., Meinzer K., Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet. 1991 Dec 21;338(8782-8783):1546–1550. doi: 10.1016/0140-6736(91)92372-9. [DOI] [PubMed] [Google Scholar]
- Drexler H., Zeiher A. M., Wollschläger H., Meinertz T., Just H., Bonzel T. Flow-dependent coronary artery dilatation in humans. Circulation. 1989 Sep;80(3):466–474. doi: 10.1161/01.cir.80.3.466. [DOI] [PubMed] [Google Scholar]
- Dubey R. K., Jackson E. K., Lüscher T. F. Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell. Role of cyclic-nucleotides and angiotensin1 receptors. J Clin Invest. 1995 Jul;96(1):141–149. doi: 10.1172/JCI118014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egashira K., Inou T., Hirooka Y., Yamada A., Maruoka Y., Kai H., Sugimachi M., Suzuki S., Takeshita A. Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions. J Clin Invest. 1993 Jan;91(1):29–37. doi: 10.1172/JCI116183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellenby M. I., Ernst C. B., Carretero O. A., Scicli A. G. Role of nitric oxide in the effect of blood flow on neointima formation. J Vasc Surg. 1996 Feb;23(2):314–322. doi: 10.1016/s0741-5214(96)70276-8. [DOI] [PubMed] [Google Scholar]
- Farhy R. D., Carretero O. A., Ho K. L., Scicli A. G. Role of kinins and nitric oxide in the effects of angiotensin converting enzyme inhibitors on neointima formation. Circ Res. 1993 Jun;72(6):1202–1210. doi: 10.1161/01.res.72.6.1202. [DOI] [PubMed] [Google Scholar]
- Feelisch M., te Poel M., Zamora R., Deussen A., Moncada S. Understanding the controversy over the identity of EDRF. Nature. 1994 Mar 3;368(6466):62–65. doi: 10.1038/368062a0. [DOI] [PubMed] [Google Scholar]
- FitzGerald G. A. Dipyridamole. N Engl J Med. 1987 May 14;316(20):1247–1257. doi: 10.1056/NEJM198705143162005. [DOI] [PubMed] [Google Scholar]
- Flavahan N. A. Atherosclerosis or lipoprotein-induced endothelial dysfunction. Potential mechanisms underlying reduction in EDRF/nitric oxide activity. Circulation. 1992 May;85(5):1927–1938. doi: 10.1161/01.cir.85.5.1927. [DOI] [PubMed] [Google Scholar]
- Flavahan N. A. Lysophosphatidylcholine modifies G protein-dependent signaling in porcine endothelial cells. Am J Physiol. 1993 Mar;264(3 Pt 2):H722–H727. doi: 10.1152/ajpheart.1993.264.3.H722. [DOI] [PubMed] [Google Scholar]
- Fleming I., Gray G. A., Schott C., Stoclet J. C. Inducible but not constitutive production of nitric oxide by vascular smooth muscle cells. Eur J Pharmacol. 1991 Aug 6;200(2-3):375–376. doi: 10.1016/0014-2999(91)90602-m. [DOI] [PubMed] [Google Scholar]
- Forrester K., Ambs S., Lupold S. E., Kapust R. B., Spillare E. A., Weinberg W. C., Felley-Bosco E., Wang X. W., Geller D. A., Tzeng E. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2442–2447. doi: 10.1073/pnas.93.6.2442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frears E. R., Zhang Z., Blake D. R., O'Connell J. P., Winyard P. G. Inactivation of tissue inhibitor of metalloproteinase-1 by peroxynitrite. FEBS Lett. 1996 Feb 26;381(1-2):21–24. doi: 10.1016/0014-5793(96)00065-8. [DOI] [PubMed] [Google Scholar]
- Freiman P. C., Mitchell G. G., Heistad D. D., Armstrong M. L., Harrison D. G. Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res. 1986 Jun;58(6):783–789. doi: 10.1161/01.res.58.6.783. [DOI] [PubMed] [Google Scholar]
- Fu Y., Blankenhorn E. P. Nitric oxide-induced anti-mitogenic effects in high and low responder rat strains. J Immunol. 1992 Apr 1;148(7):2217–2222. [PubMed] [Google Scholar]
- Fukahori M., Ichimori K., Ishida H., Nakagawa H., Okino H. Nitric oxide reversibly suppresses xanthine oxidase activity. Free Radic Res. 1994 Sep;21(4):203–212. doi: 10.3109/10715769409056572. [DOI] [PubMed] [Google Scholar]
- Fukuo K., Hata S., Suhara T., Nakahashi T., Shinto Y., Tsujimoto Y., Morimoto S., Ogihara T. Nitric oxide induces upregulation of Fas and apoptosis in vascular smooth muscle. Hypertension. 1996 Mar;27(3 Pt 2):823–826. doi: 10.1161/01.hyp.27.3.823. [DOI] [PubMed] [Google Scholar]
- Fukuo K., Inoue T., Morimoto S., Nakahashi T., Yasuda O., Kitano S., Sasada R., Ogihara T. Nitric oxide mediates cytotoxicity and basic fibroblast growth factor release in cultured vascular smooth muscle cells. A possible mechanism of neovascularization in atherosclerotic plaques. J Clin Invest. 1995 Feb;95(2):669–676. doi: 10.1172/JCI117712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- Förstermann U., Mügge A., Alheid U., Haverich A., Frölich J. C. Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Circ Res. 1988 Feb;62(2):185–190. doi: 10.1161/01.res.62.2.185. [DOI] [PubMed] [Google Scholar]
- Gaboury J., Woodman R. C., Granger D. N., Reinhardt P., Kubes P. Nitric oxide prevents leukocyte adherence: role of superoxide. Am J Physiol. 1993 Sep;265(3 Pt 2):H862–H867. doi: 10.1152/ajpheart.1993.265.3.H862. [DOI] [PubMed] [Google Scholar]
- Galle J., Busse R., Bassenge E. Hypercholesterolemia and atherosclerosis change vascular reactivity in rabbits by different mechanisms. Arterioscler Thromb. 1991 Nov-Dec;11(6):1712–1718. doi: 10.1161/01.atv.11.6.1712. [DOI] [PubMed] [Google Scholar]
- Garg U. C., Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest. 1989 May;83(5):1774–1777. doi: 10.1172/JCI114081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gauthier T. W., Davenpeck K. L., Lefer A. M. Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchnic ischemia-reperfusion. Am J Physiol. 1994 Oct;267(4 Pt 1):G562–G568. doi: 10.1152/ajpgi.1994.267.4.G562. [DOI] [PubMed] [Google Scholar]
- Gilligan D. M., Sack M. N., Guetta V., Casino P. R., Quyyumi A. A., Rader D. J., Panza J. A., Cannon R. O., 3rd Effect of antioxidant vitamins on low density lipoprotein oxidation and impaired endothelium-dependent vasodilation in patients with hypercholesterolemia. J Am Coll Cardiol. 1994 Dec;24(7):1611–1617. doi: 10.1016/0735-1097(94)90164-3. [DOI] [PubMed] [Google Scholar]
- Ginsburg R., Bristow M. R., Davis K., Dibiase A., Billingham M. E. Quantitative pharmacologic responses of normal and atherosclerotic isolated human epicardial coronary arteries. Circulation. 1984 Feb;69(2):430–440. doi: 10.1161/01.cir.69.2.430. [DOI] [PubMed] [Google Scholar]
- Girerd X. J., Hirsch A. T., Cooke J. P., Dzau V. J., Creager M. A. L-arginine augments endothelium-dependent vasodilation in cholesterol-fed rabbits. Circ Res. 1990 Dec;67(6):1301–1308. doi: 10.1161/01.res.67.6.1301. [DOI] [PubMed] [Google Scholar]
- Gordon J. B., Ganz P., Nabel E. G., Fish R. D., Zebede J., Mudge G. H., Alexander R. W., Selwyn A. P. Atherosclerosis influences the vasomotor response of epicardial coronary arteries to exercise. J Clin Invest. 1989 Jun;83(6):1946–1952. doi: 10.1172/JCI114103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham A., Hogg N., Kalyanaraman B., O'Leary V., Darley-Usmar V., Moncada S. Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett. 1993 Sep 13;330(2):181–185. doi: 10.1016/0014-5793(93)80269-z. [DOI] [PubMed] [Google Scholar]
- Griscavage J. M., Fukuto J. M., Komori Y., Ignarro L. J. Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J Biol Chem. 1994 Aug 26;269(34):21644–21649. [PubMed] [Google Scholar]
- Groves P. H., Banning A. P., Penny W. J., Newby A. C., Cheadle H. A., Lewis M. J. The effects of exogenous nitric oxide on smooth muscle cell proliferation following porcine carotid angioplasty. Cardiovasc Res. 1995 Jul;30(1):87–96. [PubMed] [Google Scholar]
- Gryglewski R. J., Palmer R. M., Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986 Apr 3;320(6061):454–456. doi: 10.1038/320454a0. [DOI] [PubMed] [Google Scholar]
- Guo J. P., Milhoan K. A., Tuan R. S., Lefer A. M. Beneficial effect of SPM-5185, a cysteine-containing nitric oxide donor, in rat carotid artery intimal injury. Circ Res. 1994 Jul;75(1):77–84. doi: 10.1161/01.res.75.1.77. [DOI] [PubMed] [Google Scholar]
- Habib F. M., Springall D. R., Davies G. J., Oakley C. M., Yacoub M. H., Polak J. M. Tumour necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet. 1996 Apr 27;347(9009):1151–1155. doi: 10.1016/s0140-6736(96)90610-8. [DOI] [PubMed] [Google Scholar]
- Habib J. B., Bossaller C., Wells S., Williams C., Morrisett J. D., Henry P. D. Preservation of endothelium-dependent vascular relaxation in cholesterol-fed rabbit by treatment with the calcium blocker PN 200110. Circ Res. 1986 Feb;58(2):305–309. doi: 10.1161/01.res.58.2.305. [DOI] [PubMed] [Google Scholar]
- Hansson G. K., Geng Y. J., Holm J., Hårdhammar P., Wennmalm A., Jennische E. Arterial smooth muscle cells express nitric oxide synthase in response to endothelial injury. J Exp Med. 1994 Aug 1;180(2):733–738. doi: 10.1084/jem.180.2.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison D. G., Bates J. N. The nitrovasodilators. New ideas about old drugs. Circulation. 1993 May;87(5):1461–1467. doi: 10.1161/01.cir.87.5.1461. [DOI] [PubMed] [Google Scholar]
- Hashimoto M., Akishita M., Eto M., Ishikawa M., Kozaki K., Toba K., Sagara Y., Taketani Y., Orimo H., Ouchi Y. Modulation of endothelium-dependent flow-mediated dilatation of the brachial artery by sex and menstrual cycle. Circulation. 1995 Dec 15;92(12):3431–3435. doi: 10.1161/01.cir.92.12.3431. [DOI] [PubMed] [Google Scholar]
- Hayashi T., Fukuto J. M., Ignarro L. J., Chaudhuri G. Basal release of nitric oxide from aortic rings is greater in female rabbits than in male rabbits: implications for atherosclerosis. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11259–11263. doi: 10.1073/pnas.89.23.11259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heistad D. D., Armstrong M. L., Marcus M. L., Piegors D. J., Mark A. L. Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circ Res. 1984 Jun;54(6):711–718. doi: 10.1161/01.res.54.6.711. [DOI] [PubMed] [Google Scholar]
- Henriksson P., Bergström K., Edhag O. Experimental atherosclerosis and a possible generation of free radicals. Thromb Res. 1985 Apr 15;38(2):195–198. doi: 10.1016/0049-3848(85)90061-1. [DOI] [PubMed] [Google Scholar]
- Henry P. D., Yokoyama M. Supersensitivity of atherosclerotic rabbit aorta to ergonovine. Mediation by a serotonergic mechanism. J Clin Invest. 1980 Aug;66(2):306–313. doi: 10.1172/JCI109858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill J. A. Single-stage coronary angiography and angioplasty: a new standard? Am J Cardiol. 1995 Jan 1;75(1):75–76. doi: 10.1016/s0002-9149(99)80532-3. [DOI] [PubMed] [Google Scholar]
- Hirata K., Miki N., Kuroda Y., Sakoda T., Kawashima S., Yokoyama M. Low concentration of oxidized low-density lipoprotein and lysophosphatidylcholine upregulate constitutive nitric oxide synthase mRNA expression in bovine aortic endothelial cells. Circ Res. 1995 Jun;76(6):958–962. doi: 10.1161/01.res.76.6.958. [DOI] [PubMed] [Google Scholar]
- Hogg N., Darley-Usmar V. M., Wilson M. T., Moncada S. The oxidation of alpha-tocopherol in human low-density lipoprotein by the simultaneous generation of superoxide and nitric oxide. FEBS Lett. 1993 Jul 12;326(1-3):199–203. doi: 10.1016/0014-5793(93)81790-7. [DOI] [PubMed] [Google Scholar]
- Holvoet P., Collen D. Oxidized lipoproteins in atherosclerosis and thrombosis. FASEB J. 1994 Dec;8(15):1279–1284. doi: 10.1096/fasebj.8.15.8001740. [DOI] [PubMed] [Google Scholar]
- Horio Y., Yasue H., Rokutanda M., Nakamura N., Ogawa H., Takaoka K., Matsuyama K., Kimura T. Effects of intracoronary injection of acetylcholine on coronary arterial diameter. Am J Cardiol. 1986 Apr 15;57(11):984–989. doi: 10.1016/0002-9149(86)90743-5. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imaizumi T., Hirooka Y., Masaki H., Harada S., Momohara M., Tagawa T., Takeshita A. Effects of L-arginine on forearm vessels and responses to acetylcholine. Hypertension. 1992 Oct;20(4):511–517. doi: 10.1161/01.hyp.20.4.511. [DOI] [PubMed] [Google Scholar]
- Inoue N., Hirata K., Yamada M., Hamamori Y., Matsuda Y., Akita H., Yokoyama M. Lysophosphatidylcholine inhibits bradykinin-induced phosphoinositide hydrolysis and calcium transients in cultured bovine aortic endothelial cells. Circ Res. 1992 Dec;71(6):1410–1421. doi: 10.1161/01.res.71.6.1410. [DOI] [PubMed] [Google Scholar]
- Isner J. M., Kearney M., Bortman S., Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation. 1995 Jun 1;91(11):2703–2711. doi: 10.1161/01.cir.91.11.2703. [DOI] [PubMed] [Google Scholar]
- Jayakody L., Senaratne M., Thomson A., Kappagoda T. Endothelium-dependent relaxation in experimental atherosclerosis in the rabbit. Circ Res. 1987 Feb;60(2):251–264. doi: 10.1161/01.res.60.2.251. [DOI] [PubMed] [Google Scholar]
- Jayakody R. L., Senaratne M. P., Thomson A. B., Kappagoda C. T. Cholesterol feeding impairs endothelium-dependent relaxation of rabbit aorta. Can J Physiol Pharmacol. 1985 Sep;63(9):1206–1209. doi: 10.1139/y85-199. [DOI] [PubMed] [Google Scholar]
- Jeremy R. W., McCarron H., Sullivan D. Effects of dietary L-arginine on atherosclerosis and endothelium-dependent vasodilatation in the hypercholesterolemic rabbit. Response according to treatment duration, anatomic site, and sex. Circulation. 1996 Aug 1;94(3):498–506. doi: 10.1161/01.cir.94.3.498. [DOI] [PubMed] [Google Scholar]
- Jessup W., Dean R. T. Autoinhibition of murine macrophage-mediated oxidation of low-density lipoprotein by nitric oxide synthesis. Atherosclerosis. 1993 Jul;101(2):145–155. doi: 10.1016/0021-9150(93)90111-7. [DOI] [PubMed] [Google Scholar]
- Jessup W., Mohr D., Gieseg S. P., Dean R. T., Stocker R. The participation of nitric oxide in cell free- and its restriction of macrophage-mediated oxidation of low-density lipoprotein. Biochim Biophys Acta. 1992 Oct 13;1180(1):73–82. doi: 10.1016/0925-4439(92)90029-m. [DOI] [PubMed] [Google Scholar]
- Johnsrude C. L., Perry J. C., Cecchin F., Smith E. O., Fraley K., Friedman R. A., Towbin J. A. Differentiating anomalous left main coronary artery originating from the pulmonary artery in infants from myocarditis and dilated cardiomyopathy by electrocardiogram. Am J Cardiol. 1995 Jan 1;75(1):71–74. doi: 10.1016/s0002-9149(99)80531-1. [DOI] [PubMed] [Google Scholar]
- Joly G. A., Schini V. B., Vanhoutte P. M. Balloon injury and interleukin-1 beta induce nitric oxide synthase activity in rat carotid arteries. Circ Res. 1992 Aug;71(2):331–338. doi: 10.1161/01.res.71.2.331. [DOI] [PubMed] [Google Scholar]
- Jorens P. G., Rosseneu M., Devreese A. M., Bult H., Marescau B., Herman A. G. Diminished capacity to release metabolites of nitric oxide synthase in macrophages loaded with oxidized low-density lipoproteins. Eur J Pharmacol. 1992 Feb 25;212(1):113–115. doi: 10.1016/0014-2999(92)90082-f. [DOI] [PubMed] [Google Scholar]
- Kanamaru K., Waga S., Tochio H., Nagatani K. The effect of atherosclerosis on endothelium-dependent relaxation in the aorta and intracranial arteries of rabbits. J Neurosurg. 1989 May;70(5):793–798. doi: 10.3171/jns.1989.70.5.0793. [DOI] [PubMed] [Google Scholar]
- Kanazawa K., Kawashima S., Mikami S., Miwa Y., Hirata K., Suematsu M., Hayashi Y., Itoh H., Yokoyama M. Endothelial constitutive nitric oxide synthase protein and mRNA increased in rabbit atherosclerotic aorta despite impaired endothelium-dependent vascular relaxation. Am J Pathol. 1996 Jun;148(6):1949–1956. [PMC free article] [PubMed] [Google Scholar]
- Kanno K., Hirata Y., Emori T., Ohta K., Eguchi S., Imai T., Marumo F. L-arginine infusion induces hypotension and diuresis/natriuresis with concomitant increased urinary excretion of nitrite/nitrate and cyclic GMP in humans. Clin Exp Pharmacol Physiol. 1992 Sep;19(9):619–625. doi: 10.1111/j.1440-1681.1992.tb00514.x. [DOI] [PubMed] [Google Scholar]
- Kariya K., Kawahara Y., Araki S., Fukuzaki H., Takai Y. Antiproliferative action of cyclic GMP-elevating vasodilators in cultured rabbit aortic smooth muscle cells. Atherosclerosis. 1989 Dec;80(2):143–147. doi: 10.1016/0021-9150(89)90022-1. [DOI] [PubMed] [Google Scholar]
- Kaski J. C., Crea F., Meran D., Rodriguez L., Araujo L., Chierchia S., Davies G., Maseri A. Local coronary supersensitivity to diverse vasoconstrictive stimuli in patients with variant angina. Circulation. 1986 Dec;74(6):1255–1265. doi: 10.1161/01.cir.74.6.1255. [DOI] [PubMed] [Google Scholar]
- Kawabe T., Isobe K. I., Hasegawa Y., Nakashima I., Shimokata K. Immunosuppressive activity induced by nitric oxide in culture supernatant of activated rat alveolar macrophages. Immunology. 1992 May;76(1):72–78. [PMC free article] [PubMed] [Google Scholar]
- Kawachi Y., Tomoike H., Maruoka Y., Kikuchi Y., Araki H., Ishii Y., Tanaka K., Nakamura M. Selective hypercontraction caused by ergonovine in the canine coronary artery under conditions of induced atherosclerosis. Circulation. 1984 Feb;69(2):441–450. doi: 10.1161/01.cir.69.2.441. [DOI] [PubMed] [Google Scholar]
- Kawashima T., Yashiro A., Nandate H., Himeno E., Oka Y., Kaku T., Nakashima Y., Kuroiwa A. Increased susceptibility of angiographically smooth left anterior descending coronary artery to an impairment of vasoresponse to acetylcholine, and the relation between impaired vasoresponse and low-density lipoprotein cholesterol level. Am J Cardiol. 1995 Jun 15;75(17):1265–1267. doi: 10.1016/s0002-9149(99)80775-9. [DOI] [PubMed] [Google Scholar]
- Keaney J. F., Jr, Gaziano J. M., Xu A., Frei B., Curran-Celentano J., Shwaery G. T., Loscalzo J., Vita J. A. Low-dose alpha-tocopherol improves and high-dose alpha-tocopherol worsens endothelial vasodilator function in cholesterol-fed rabbits. J Clin Invest. 1994 Feb;93(2):844–851. doi: 10.1172/JCI117039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keaney J. F., Jr, Xu A., Cunningham D., Jackson T., Frei B., Vita J. A. Dietary probucol preserves endothelial function in cholesterol-fed rabbits by limiting vascular oxidative stress and superoxide generation. J Clin Invest. 1995 Jun;95(6):2520–2529. doi: 10.1172/JCI117953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan B. V., Parthasarathy S. S., Alexander R. W., Medford R. M. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest. 1995 Mar;95(3):1262–1270. doi: 10.1172/JCI117776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kockx M. M., De Meyer G. R., Jacob W. A., Bult H., Herman A. G. Triphasic sequence of neointimal formation in the cuffed carotid artery of the rabbit. Arterioscler Thromb. 1992 Dec;12(12):1447–1457. doi: 10.1161/01.atv.12.12.1447. [DOI] [PubMed] [Google Scholar]
- Kockx M. M., De Meyer G. R., Muhring J., Bult H., Bultinck J., Herman A. G. Distribution of cell replication and apoptosis in atherosclerotic plaques of cholesterol-fed rabbits. Atherosclerosis. 1996 Feb;120(1-2):115–124. doi: 10.1016/0021-9150(95)05691-2. [DOI] [PubMed] [Google Scholar]
- Kojda G., Noack E. Effects of pentaerythrityl-tetranitrate and isosorbide-5-mononitrate in experimental atherosclerosis. Agents Actions Suppl. 1995;45:201–206. doi: 10.1007/978-3-0348-7346-8_29. [DOI] [PubMed] [Google Scholar]
- Kolodgie F. D., Virmani R., Rice H. E., Mergner W. J. Vascular reactivity during the progression of atherosclerotic plaque. A study in Watanabe heritable hyperlipidemic rabbits. Circ Res. 1990 Apr;66(4):1112–1126. doi: 10.1161/01.res.66.4.1112. [DOI] [PubMed] [Google Scholar]
- Komori K., Shimokawa H., Vanhoutte P. M. Hypercholesterolemia impairs endothelium-dependent relaxations to aggregating platelets in porcine iliac arteries. J Vasc Surg. 1989 Sep;10(3):318–325. [PubMed] [Google Scholar]
- Kubes P., Suzuki M., Granger D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4651–4655. doi: 10.1073/pnas.88.11.4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kugiyama K., Kerns S. A., Morrisett J. D., Roberts R., Henry P. D. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990 Mar 8;344(6262):160–162. doi: 10.1038/344160a0. [DOI] [PubMed] [Google Scholar]
- Kume N., Cybulsky M. I., Gimbrone M. A., Jr Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992 Sep;90(3):1138–1144. doi: 10.1172/JCI115932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo L., Davis M. J., Cannon M. S., Chilian W. M. Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation. Restoration of endothelium-dependent responses by L-arginine. Circ Res. 1992 Mar;70(3):465–476. doi: 10.1161/01.res.70.3.465. [DOI] [PubMed] [Google Scholar]
- Lamas S., Michel T., Brenner B. M., Marsden P. A. Nitric oxide synthesis in endothelial cells: evidence for a pathway inducible by TNF-alpha. Am J Physiol. 1991 Oct;261(4 Pt 1):C634–C641. doi: 10.1152/ajpcell.1991.261.4.C634. [DOI] [PubMed] [Google Scholar]
- Lang D., Smith J. A., Lewis M. J. Induction of a calcium-independent NO synthase by hypercholesterolaemia in the rabbit. Br J Pharmacol. 1993 Feb;108(2):290–292. doi: 10.1111/j.1476-5381.1993.tb12796.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J. S., Adrie C., Jacob H. J., Roberts J. D., Jr, Zapol W. M., Bloch K. D. Chronic inhalation of nitric oxide inhibits neointimal formation after balloon-induced arterial injury. Circ Res. 1996 Feb;78(2):337–342. doi: 10.1161/01.res.78.2.337. [DOI] [PubMed] [Google Scholar]
- Lefer A. M., Ma X. L. Decreased basal nitric oxide release in hypercholesterolemia increases neutrophil adherence to rabbit coronary artery endothelium. Arterioscler Thromb. 1993 Jun;13(6):771–776. doi: 10.1161/01.atv.13.6.771. [DOI] [PubMed] [Google Scholar]
- Lerman A., Edwards B. S., Hallett J. W., Heublein D. M., Sandberg S. M., Burnett J. C., Jr Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med. 1991 Oct 3;325(14):997–1001. doi: 10.1056/NEJM199110033251404. [DOI] [PubMed] [Google Scholar]
- Levine G. N., Frei B., Koulouris S. N., Gerhard M. D., Keaney J. F., Jr, Vita J. A. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation. 1996 Mar 15;93(6):1107–1113. doi: 10.1161/01.cir.93.6.1107. [DOI] [PubMed] [Google Scholar]
- Liao J. K., Bettmann M. A., Sandor T., Tucker J. I., Coleman S. M., Creager M. A. Differential impairment of vasodilator responsiveness of peripheral resistance and conduit vessels in humans with atherosclerosis. Circ Res. 1991 Apr;68(4):1027–1034. doi: 10.1161/01.res.68.4.1027. [DOI] [PubMed] [Google Scholar]
- Liao J. K., Shin W. S., Lee W. Y., Clark S. L. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem. 1995 Jan 6;270(1):319–324. doi: 10.1074/jbc.270.1.319. [DOI] [PubMed] [Google Scholar]
- Libby P., Hansson G. K. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest. 1991 Jan;64(1):5–15. [PubMed] [Google Scholar]
- Ludmer P. L., Selwyn A. P., Shook T. L., Wayne R. R., Mudge G. H., Alexander R. W., Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986 Oct 23;315(17):1046–1051. doi: 10.1056/NEJM198610233151702. [DOI] [PubMed] [Google Scholar]
- Lüscher T. F., Dohi Y., Tschudi M. Endothelium-dependent regulation of resistance arteries: alterations with aging and hypertension. J Cardiovasc Pharmacol. 1992;19 (Suppl 5):S34–S42. [PubMed] [Google Scholar]
- Ma X. L., Weyrich A. S., Lefer D. J., Lefer A. M. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res. 1993 Feb;72(2):403–412. doi: 10.1161/01.res.72.2.403. [DOI] [PubMed] [Google Scholar]
- MacNaul K. L., Hutchinson N. I. Differential expression of iNOS and cNOS mRNA in human vascular smooth muscle cells and endothelial cells under normal and inflammatory conditions. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1330–1334. doi: 10.1006/bbrc.1993.2398. [DOI] [PubMed] [Google Scholar]
- Maccarrone M., Corasaniti M. T., Guerrieri P., Nisticò G., Finazzi Agrò A. Nitric oxide-donor compounds inhibit lipoxygenase activity. Biochem Biophys Res Commun. 1996 Feb 6;219(1):128–133. doi: 10.1006/bbrc.1996.0193. [DOI] [PubMed] [Google Scholar]
- Maeba R., Maruyama A., Tarutani O., Ueta N., Shimasaki H. Oxidized low-density lipoprotein induces the production of superoxide by neutrophils. FEBS Lett. 1995 Dec 27;377(3):309–312. doi: 10.1016/0014-5793(95)01336-9. [DOI] [PubMed] [Google Scholar]
- Malo-Ranta U., Ylä-Herttuala S., Metsä-Ketelä T., Jaakkola O., Moilanen E., Vuorinen P., Nikkari T. Nitric oxide donor GEA 3162 inhibits endothelial cell-mediated oxidation of low density lipoprotein. FEBS Lett. 1994 Jan 10;337(2):179–183. doi: 10.1016/0014-5793(94)80269-6. [DOI] [PubMed] [Google Scholar]
- Mangin E. L., Jr, Kugiyama K., Nguy J. H., Kerns S. A., Henry P. D. Effects of lysolipids and oxidatively modified low density lipoprotein on endothelium-dependent relaxation of rabbit aorta. Circ Res. 1993 Jan;72(1):161–166. doi: 10.1161/01.res.72.1.161. [DOI] [PubMed] [Google Scholar]
- Marks D. S., Vita J. A., Folts J. D., Keaney J. F., Jr, Welch G. N., Loscalzo J. Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide. J Clin Invest. 1995 Dec;96(6):2630–2638. doi: 10.1172/JCI118328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin G. R. Vascular receptors for 5-hydroxytryptamine: distribution, function and classification. Pharmacol Ther. 1994;62(3):283–324. doi: 10.1016/0163-7258(94)90048-5. [DOI] [PubMed] [Google Scholar]
- Maruyama W., Hashizume Y., Matsubara K., Naoi M. Identification of 3-nitro-L-tyrosine, a product of nitric oxide and superoxide, as an indicator of oxidative stress in the human brain. J Chromatogr B Biomed Appl. 1996 Feb 9;676(1):153–158. doi: 10.1016/0378-4347(95)00400-9. [DOI] [PubMed] [Google Scholar]
- Matthys K. E., Van Hove C. E., Jorens P. G., Rosseneu M., Marescau B., Herman A. G., Bult H. Dual effects of oxidized low-density lipoprotein on immune-stimulated nitric oxide and prostaglandin release in macrophages. Eur J Pharmacol. 1996 Feb 29;298(1):97–103. doi: 10.1016/0014-2999(95)00810-1. [DOI] [PubMed] [Google Scholar]
- McDowell I. F., Brennan G. M., McEneny J., Young I. S., Nicholls D. P., McVeigh G. E., Bruce I., Trimble E. R., Johnston G. D. The effect of probucol and vitamin E treatment on the oxidation of low-density lipoprotein and forearm vascular responses in humans. Eur J Clin Invest. 1994 Nov;24(11):759–765. doi: 10.1111/j.1365-2362.1994.tb01073.x. [DOI] [PubMed] [Google Scholar]
- McLenachan J. M., Vita J., Fish D. R., Treasure C. B., Cox D. A., Ganz P., Selwyn A. P. Early evidence of endothelial vasodilator dysfunction at coronary branch points. Circulation. 1990 Oct;82(4):1169–1173. doi: 10.1161/01.cir.82.4.1169. [DOI] [PubMed] [Google Scholar]
- McNamara D. B., Bedi B., Aurora H., Tena L., Ignarro L. J., Kadowitz P. J., Akers D. L. L-arginine inhibits balloon catheter-induced intimal hyperplasia. Biochem Biophys Res Commun. 1993 May 28;193(1):291–296. doi: 10.1006/bbrc.1993.1622. [DOI] [PubMed] [Google Scholar]
- Mehta A., Yang B., Khan S., Hendricks J. B., Stephen C., Mehta J. L. Oxidized low-density lipoproteins facilitate leukocyte adhesion to aortic intima without affecting endothelium-dependent relaxation. Role of P-selectin. Arterioscler Thromb Vasc Biol. 1995 Nov;15(11):2076–2083. doi: 10.1161/01.atv.15.11.2076. [DOI] [PubMed] [Google Scholar]
- Merryman P. F., Clancy R. M., He X. Y., Abramson S. B. Modulation of human T cell responses by nitric oxide and its derivative, S-nitrosoglutathione. Arthritis Rheum. 1993 Oct;36(10):1414–1422. doi: 10.1002/art.1780361014. [DOI] [PubMed] [Google Scholar]
- Messmer U. K., Brüne B. Nitric oxide (NO) in apoptotic versus necrotic RAW 264.7 macrophage cell death: the role of NO-donor exposure, NAD+ content, and p53 accumulation. Arch Biochem Biophys. 1996 Mar 1;327(1):1–10. doi: 10.1006/abbi.1996.0085. [DOI] [PubMed] [Google Scholar]
- Miller M. J., Grisham M. B. Nitric oxide as a mediator of inflammation?-You had better believe it. Mediators Inflamm. 1995;4(6):387–396. doi: 10.1155/S0962935195000639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minor R. L., Jr, Myers P. R., Guerra R., Jr, Bates J. N., Harrison D. G. Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest. 1990 Dec;86(6):2109–2116. doi: 10.1172/JCI114949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohan P. F., Desaiah D. Very low density and low density lipoproteins induce nitric oxide synthesis in macrophages. Biochem Biophys Res Commun. 1994 Nov 15;204(3):1047–1054. doi: 10.1006/bbrc.1994.2568. [DOI] [PubMed] [Google Scholar]
- Mollace V., Salvemini D., Anggard E., Vane J. Nitric oxide from vascular smooth muscle cells: regulation of platelet reactivity and smooth muscle cell guanylate cyclase. Br J Pharmacol. 1991 Nov;104(3):633–638. doi: 10.1111/j.1476-5381.1991.tb12481.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mooradian D. L., Hutsell T. C., Keefer L. K. Nitric oxide (NO) donor molecules: effect of NO release rate on vascular smooth muscle cell proliferation in vitro. J Cardiovasc Pharmacol. 1995 Apr;25(4):674–678. [PubMed] [Google Scholar]
- Morbidelli L., Chang C. H., Douglas J. G., Granger H. J., Ledda F., Ziche M. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Physiol. 1996 Jan;270(1 Pt 2):H411–H415. doi: 10.1152/ajpheart.1996.270.1.H411. [DOI] [PubMed] [Google Scholar]
- Motterlini R., Foresti R., Intaglietta M., Winslow R. M. NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. Am J Physiol. 1996 Jan;270(1 Pt 2):H107–H114. doi: 10.1152/ajpheart.1996.270.1.H107. [DOI] [PubMed] [Google Scholar]
- Murad F. Regulation of cytosolic guanylyl cyclase by nitric oxide: the NO-cyclic GMP signal transduction system. Adv Pharmacol. 1994;26:19–33. doi: 10.1016/s1054-3589(08)60049-6. [DOI] [PubMed] [Google Scholar]
- Murohara T., Kugiyama K., Ohgushi M., Sugiyama S., Ohta Y., Yasue H. LPC in oxidized LDL elicits vasocontraction and inhibits endothelium- dependent relaxation. Am J Physiol. 1994 Dec;267(6 Pt 2):H2441–H2449. doi: 10.1152/ajpheart.1994.267.6.H2441. [DOI] [PubMed] [Google Scholar]
- Murrell G. A., Jang D., Williams R. J. Nitric oxide activates metalloprotease enzymes in articular cartilage. Biochem Biophys Res Commun. 1995 Jan 5;206(1):15–21. doi: 10.1006/bbrc.1995.1003. [DOI] [PubMed] [Google Scholar]
- Myers P. R., Minor R. L., Jr, Guerra R., Jr, Bates J. N., Harrison D. G. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature. 1990 May 10;345(6271):161–163. doi: 10.1038/345161a0. [DOI] [PubMed] [Google Scholar]
- Mügge A., Brandes R. P., Böger R. H., Dwenger A., Bode-Böger S., Kienke S., Frölich J. C., Lichtlen P. R. Vascular release of superoxide radicals is enhanced in hypercholesterolemic rabbits. J Cardiovasc Pharmacol. 1994 Dec;24(6):994–998. doi: 10.1097/00005344-199424060-00019. [DOI] [PubMed] [Google Scholar]
- Mügge A., Elwell J. H., Peterson T. E., Harrison D. G. Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity. Am J Physiol. 1991 Feb;260(2 Pt 1):C219–C225. doi: 10.1152/ajpcell.1991.260.2.C219. [DOI] [PubMed] [Google Scholar]
- Mügge A., Elwell J. H., Peterson T. E., Hofmeyer T. G., Heistad D. D., Harrison D. G. Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res. 1991 Nov;69(5):1293–1300. doi: 10.1161/01.res.69.5.1293. [DOI] [PubMed] [Google Scholar]
- Mügge A., Harrison D. G. L-arginine does not restore endothelial dysfunction in atherosclerotic rabbit aorta in vitro. Blood Vessels. 1991;28(5):354–357. doi: 10.1159/000158881. [DOI] [PubMed] [Google Scholar]
- Nabel E. G., Selwyn A. P., Ganz P. Large coronary arteries in humans are responsive to changing blood flow: an endothelium-dependent mechanism that fails in patients with atherosclerosis. J Am Coll Cardiol. 1990 Aug;16(2):349–356. doi: 10.1016/0735-1097(90)90584-c. [DOI] [PubMed] [Google Scholar]
- Nakaki T., Nakayama M., Kato R. Inhibition by nitric oxide and nitric oxide-producing vasodilators of DNA synthesis in vascular smooth muscle cells. Eur J Pharmacol. 1990 Dec 15;189(6):347–353. doi: 10.1016/0922-4106(90)90031-r. [DOI] [PubMed] [Google Scholar]
- Naruse K., Shimizu K., Muramatsu M., Toki Y., Miyazaki Y., Okumura K., Hashimoto H., Ito T. Long-term inhibition of NO synthesis promotes atherosclerosis in the hypercholesterolemic rabbit thoracic aorta. PGH2 does not contribute to impaired endothelium-dependent relaxation. Arterioscler Thromb. 1994 May;14(5):746–752. doi: 10.1161/01.atv.14.5.746. [DOI] [PubMed] [Google Scholar]
- Newman C. M., Maseri A., Hackett D. R., el-Tamimi H. M., Davies G. J. Response of angiographically normal and atherosclerotic left anterior descending coronary arteries to acetylcholine. Am J Cardiol. 1990 Nov 1;66(15):1070–1076. doi: 10.1016/0002-9149(90)90507-w. [DOI] [PubMed] [Google Scholar]
- Niu X. F., Smith C. W., Kubes P. Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circ Res. 1994 Jun;74(6):1133–1140. doi: 10.1161/01.res.74.6.1133. [DOI] [PubMed] [Google Scholar]
- Ohara Y., Peterson T. E., Harrison D. G. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest. 1993 Jun;91(6):2546–2551. doi: 10.1172/JCI116491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohara Y., Peterson T. E., Sayegh H. S., Subramanian R. R., Wilcox J. N., Harrison D. G. Dietary correction of hypercholesterolemia in the rabbit normalizes endothelial superoxide anion production. Circulation. 1995 Aug 15;92(4):898–903. doi: 10.1161/01.cir.92.4.898. [DOI] [PubMed] [Google Scholar]
- Ohara Y., Peterson T. E., Zheng B., Kuo J. F., Harrison D. G. Lysophosphatidylcholine increases vascular superoxide anion production via protein kinase C activation. Arterioscler Thromb. 1994 Jun;14(6):1007–1013. doi: 10.1161/01.atv.14.6.1007. [DOI] [PubMed] [Google Scholar]
- Osborne J. A., Lento P. H., Siegfried M. R., Stahl G. L., Fusman B., Lefer A. M. Cardiovascular effects of acute hypercholesterolemia in rabbits. Reversal with lovastatin treatment. J Clin Invest. 1989 Feb;83(2):465–473. doi: 10.1172/JCI113905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osborne J. A., Siegman M. J., Sedar A. W., Mooers S. U., Lefer A. M. Lack of endothelium-dependent relaxation in coronary resistance arteries of cholesterol-fed rabbits. Am J Physiol. 1989 Mar;256(3 Pt 1):C591–C597. doi: 10.1152/ajpcell.1989.256.3.C591. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Bridge L., Foxwell N. A., Moncada S. The role of nitric oxide in endothelial cell damage and its inhibition by glucocorticoids. Br J Pharmacol. 1992 Jan;105(1):11–12. doi: 10.1111/j.1476-5381.1992.tb14202.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Pomerantz K. B., Hajjar D. P., Levi R., Gross S. S. Cholesterol enrichment of arterial smooth muscle cells upregulates cytokine-induced nitric oxide synthesis. Biochem Biophys Res Commun. 1993 Feb 26;191(1):103–109. doi: 10.1006/bbrc.1993.1190. [DOI] [PubMed] [Google Scholar]
- Pritchard K. A., Jr, Groszek L., Smalley D. M., Sessa W. C., Wu M., Villalon P., Wolin M. S., Stemerman M. B. Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res. 1995 Sep;77(3):510–518. doi: 10.1161/01.res.77.3.510. [DOI] [PubMed] [Google Scholar]
- Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
- Radomski M. W., Palmer R. M., Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol. 1987 Sep;92(1):181–187. doi: 10.1111/j.1476-5381.1987.tb11310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radomski M. W., Vallance P., Whitley G., Foxwell N., Moncada S. Platelet adhesion to human vascular endothelium is modulated by constitutive and cytokine induced nitric oxide. Cardiovasc Res. 1993 Jul;27(7):1380–1382. doi: 10.1093/cvr/27.7.1380. [DOI] [PubMed] [Google Scholar]
- Rapoport R. M., Draznin M. B., Murad F. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature. 1983 Nov 10;306(5939):174–176. doi: 10.1038/306174a0. [DOI] [PubMed] [Google Scholar]
- Rasheed Q., Hodgson J. M. Application of intracoronary ultrasonography in the study of coronary artery pathophysiology. J Clin Ultrasound. 1993 Nov-Dec;21(9):569–578. doi: 10.1002/jcu.1870210904. [DOI] [PubMed] [Google Scholar]
- Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rinaldo J. E., Clark M., Parinello J., Shepherd V. L. Nitric oxide inactivates xanthine dehydrogenase and xanthine oxidase in interferon-gamma-stimulated macrophages. Am J Respir Cell Mol Biol. 1994 Nov;11(5):625–630. doi: 10.1165/ajrcmb.11.5.7524568. [DOI] [PubMed] [Google Scholar]
- Rizvi M. A., Katwa L., Spadone D. P., Myers P. R. The effects of endothelin-1 on collagen type I and type III synthesis in cultured porcine coronary artery vascular smooth muscle cells. J Mol Cell Cardiol. 1996 Feb;28(2):243–252. doi: 10.1006/jmcc.1996.0023. [DOI] [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
- Rubanyi G. M., Vanhoutte P. M. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle. Am J Physiol. 1986 May;250(5 Pt 2):H815–H821. doi: 10.1152/ajpheart.1986.250.5.H815. [DOI] [PubMed] [Google Scholar]
- Rubanyi G. M., Vanhoutte P. M. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol. 1986 May;250(5 Pt 2):H822–H827. doi: 10.1152/ajpheart.1986.250.5.H822. [DOI] [PubMed] [Google Scholar]
- Rubbo H., Parthasarathy S., Barnes S., Kirk M., Kalyanaraman B., Freeman B. A. Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives. Arch Biochem Biophys. 1995 Dec 1;324(1):15–25. doi: 10.1006/abbi.1995.9935. [DOI] [PubMed] [Google Scholar]
- Russell M. E., Wallace A. F., Wyner L. R., Newell J. B., Karnovsky M. J. Upregulation and modulation of inducible nitric oxide synthase in rat cardiac allografts with chronic rejection and transplant arteriosclerosis. Circulation. 1995 Aug 1;92(3):457–464. doi: 10.1161/01.cir.92.3.457. [DOI] [PubMed] [Google Scholar]
- Sarih M., Souvannavong V., Adam A. Nitric oxide synthase induces macrophage death by apoptosis. Biochem Biophys Res Commun. 1993 Mar 15;191(2):503–508. doi: 10.1006/bbrc.1993.1246. [DOI] [PubMed] [Google Scholar]
- Sarkar R., Meinberg E. G., Stanley J. C., Gordon D., Webb R. C. Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells. Circ Res. 1996 Feb;78(2):225–230. doi: 10.1161/01.res.78.2.225. [DOI] [PubMed] [Google Scholar]
- Schafer A. I., Alexander R. W., Handin R. I. Inhibition of platelet function by organic nitrate vasodilators. Blood. 1980 Apr;55(4):649–654. [PubMed] [Google Scholar]
- Schini V. B., Busse R., Vanhoutte P. M. Inducible nitric oxide synthase in vascular smooth muscle. Arzneimittelforschung. 1994 Mar;44(3A):432–435. [PubMed] [Google Scholar]
- Schroeder J. S., Bolen J. L., Quint R. A., Clark D. A., Hayden W. G., Higgins C. B., Wexler L. Provocation of coronary spasm with ergonovine maleate. New test with results in 57 patients undergoing coronary arteriography. Am J Cardiol. 1977 Oct;40(4):487–491. doi: 10.1016/0002-9149(77)90060-1. [DOI] [PubMed] [Google Scholar]
- Sellke F. W., Armstrong M. L., Harrison D. G. Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates. Circulation. 1990 May;81(5):1586–1593. doi: 10.1161/01.cir.81.5.1586. [DOI] [PubMed] [Google Scholar]
- Sharma P., Evans A. T., Parker P. J., Evans F. J. NADPH-oxidase activation by protein kinase C-isotypes. Biochem Biophys Res Commun. 1991 Jun 28;177(3):1033–1040. doi: 10.1016/0006-291x(91)90642-k. [DOI] [PubMed] [Google Scholar]
- Sharma R. C., Crawford D. W., Kramsch D. M., Sevanian A., Jiao Q. Immunolocalization of native antioxidant scavenger enzymes in early hypertensive and atherosclerotic arteries. Role of oxygen free radicals. Arterioscler Thromb. 1992 Apr;12(4):403–415. doi: 10.1161/01.atv.12.4.403. [DOI] [PubMed] [Google Scholar]
- Shimokawa H., Flavahan N. A., Vanhoutte P. M. Loss of endothelial pertussis toxin-sensitive G protein function in atherosclerotic porcine coronary arteries. Circulation. 1991 Feb;83(2):652–660. doi: 10.1161/01.cir.83.2.652. [DOI] [PubMed] [Google Scholar]
- Shimokawa H., Tomoike H., Nabeyama S., Yamamoto H., Araki H., Nakamura M., Ishii Y., Tanaka K. Coronary artery spasm induced in atherosclerotic miniature swine. Science. 1983 Aug 5;221(4610):560–562. doi: 10.1126/science.6408736. [DOI] [PubMed] [Google Scholar]
- Shimokawa H., Vanhoutte P. M. Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and atherosclerosis. Circ Res. 1989 May;64(5):900–914. doi: 10.1161/01.res.64.5.900. [DOI] [PubMed] [Google Scholar]
- Siegfried M. R., Carey C., Ma X. L., Lefer A. M. Beneficial effects of SPM-5185, a cysteine-containing NO donor in myocardial ischemia-reperfusion. Am J Physiol. 1992 Sep;263(3 Pt 2):H771–H777. doi: 10.1152/ajpheart.1992.263.3.H771. [DOI] [PubMed] [Google Scholar]
- Singer A. H., Tsao P. S., Wang B. Y., Bloch D. A., Cooke J. P. Discordant effects of dietary L-arginine on vascular structure and reactivity in hypercholesterolemic rabbits. J Cardiovasc Pharmacol. 1995 May;25(5):710–716. doi: 10.1097/00005344-199505000-00005. [DOI] [PubMed] [Google Scholar]
- Sobey C. G., Brooks R. M., 2nd, Heistad D. D. Evidence that expression of inducible nitric oxide synthase in response to endotoxin is augmented in atherosclerotic rabbits. Circ Res. 1995 Sep;77(3):536–543. doi: 10.1161/01.res.77.3.536. [DOI] [PubMed] [Google Scholar]
- Sreeharan N., Jayakody R. L., Senaratne M. P., Thomson A. B., Kappagoda C. T. Endothelium-dependent relaxation and experimental atherosclerosis in the rabbit aorta. Can J Physiol Pharmacol. 1986 Nov;64(11):1451–1453. doi: 10.1139/y86-246. [DOI] [PubMed] [Google Scholar]
- Stary H. C., Blankenhorn D. H., Chandler A. B., Glagov S., Insull W., Jr, Richardson M., Rosenfeld M. E., Schaffer S. A., Schwartz C. J., Wagner W. D. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1992 Jan;85(1):391–405. doi: 10.1161/01.cir.85.1.391. [DOI] [PubMed] [Google Scholar]
- Steinbrecher U. P. Role of superoxide in endothelial-cell modification of low-density lipoproteins. Biochim Biophys Acta. 1988 Mar 4;959(1):20–30. doi: 10.1016/0005-2760(88)90145-2. [DOI] [PubMed] [Google Scholar]
- Stewart D. J., Münzel T., Bassenge E. Reversal of acetylcholine-induced coronary resistance vessel dilation by hemoglobin. Eur J Pharmacol. 1987 Apr 14;136(2):239–242. doi: 10.1016/0014-2999(87)90717-5. [DOI] [PubMed] [Google Scholar]
- Struck A. T., Hogg N., Thomas J. P., Kalyanaraman B. Nitric oxide donor compounds inhibit the toxicity of oxidized low-density lipoprotein to endothelial cells. FEBS Lett. 1995 Mar 20;361(2-3):291–294. doi: 10.1016/0014-5793(95)00178-c. [DOI] [PubMed] [Google Scholar]
- Suttorp N., Hippenstiel S., Fuhrmann M., Krull M., Podzuweit T. Role of nitric oxide and phosphodiesterase isoenzyme II for reduction of endothelial hyperpermeability. Am J Physiol. 1996 Mar;270(3 Pt 1):C778–C785. doi: 10.1152/ajpcell.1996.270.3.C778. [DOI] [PubMed] [Google Scholar]
- Suzuki H., Ikenaga H., Hishikawa K., Nakaki T., Kato R., Saruta T. Increases in NO2-/NO3- excretion in the urine as an indicator of the release of endothelium-derived relaxing factor during elevation of blood pressure. Clin Sci (Lond) 1992 Jun;82(6):631–634. doi: 10.1042/cs0820631. [DOI] [PubMed] [Google Scholar]
- Szabó C., Zingarelli B., O'Connor M., Salzman A. L. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1753–1758. doi: 10.1073/pnas.93.5.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tagawa H., Tomoike H., Nakamura M. Putative mechanisms of the impairment of endothelium-dependent relaxation of the aorta with atheromatous plaque in heritable hyperlipidemic rabbits. Circ Res. 1991 Feb;68(2):330–337. doi: 10.1161/01.res.68.2.330. [DOI] [PubMed] [Google Scholar]
- Tarry W. C., Makhoul R. G. L-arginine improves endothelium-dependent vasorelaxation and reduces intimal hyperplasia after balloon angioplasty. Arterioscler Thromb. 1994 Jun;14(6):938–943. doi: 10.1161/01.atv.14.6.938. [DOI] [PubMed] [Google Scholar]
- Thomas J. P., Geiger P. G., Girotti A. W. Lethal damage to endothelial cells by oxidized low density lipoprotein: role of selenoperoxidases in cytoprotection against lipid hydroperoxide- and iron-mediated reactions. J Lipid Res. 1993 Mar;34(3):479–490. [PubMed] [Google Scholar]
- Thubrikar M. J., Robicsek F. Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg. 1995 Jun;59(6):1594–1603. doi: 10.1016/0003-4975(94)01037-d. [DOI] [PubMed] [Google Scholar]
- Trachtman H., Futterweit S., Garg P., Reddy K., Singhal P. C. Nitric oxide stimulates the activity of a 72-kDa neutral matrix metalloproteinase in cultured rat mesangial cells. Biochem Biophys Res Commun. 1996 Jan 26;218(3):704–708. doi: 10.1006/bbrc.1996.0125. [DOI] [PubMed] [Google Scholar]
- Trezzini C., Jungi T. W., Spycher M. O., Maly F. E., Rao P. Human monocytes CD36 and CD16 are signaling molecules. Evidence from studies using antibody-induced chemiluminescence as a tool to probe signal transduction. Immunology. 1990 Sep;71(1):29–37. [PMC free article] [PubMed] [Google Scholar]
- Tsao P. S., Lewis N. P., Alpert S., Cooke J. P. Exposure to shear stress alters endothelial adhesiveness. Role of nitric oxide. Circulation. 1995 Dec 15;92(12):3513–3519. doi: 10.1161/01.cir.92.12.3513. [DOI] [PubMed] [Google Scholar]
- Tsao P. S., McEvoy L. M., Drexler H., Butcher E. C., Cooke J. P. Enhanced endothelial adhesiveness in hypercholesterolemia is attenuated by L-arginine. Circulation. 1994 May;89(5):2176–2182. doi: 10.1161/01.cir.89.5.2176. [DOI] [PubMed] [Google Scholar]
- Vallance P., Leone A., Calver A., Collier J., Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992 Mar 7;339(8793):572–575. doi: 10.1016/0140-6736(92)90865-z. [DOI] [PubMed] [Google Scholar]
- Van Belle E., Vallet B., Auffray J. L., Bauters C., Hamon M., McFadden E. P., Lablanche J. M., Dupuis B., Bertrand M. E. NO synthesis is involved in structural and functional effects of ACE inhibitors in injured arteries. Am J Physiol. 1996 Jan;270(1 Pt 2):H298–H305. doi: 10.1152/ajpheart.1996.270.1.H298. [DOI] [PubMed] [Google Scholar]
- Vanhoutte P. M., Shimokawa H. Endothelium-derived relaxing factor and coronary vasospasm. Circulation. 1989 Jul;80(1):1–9. doi: 10.1161/01.cir.80.1.1. [DOI] [PubMed] [Google Scholar]
- Verbeuren T. J., Bonhomme E., Laubie M., Simonet S. Evidence for induction of nonendothelial NO synthase in aortas of cholesterol-fed rabbits. J Cardiovasc Pharmacol. 1993 May;21(5):841–845. doi: 10.1097/00005344-199305000-00023. [DOI] [PubMed] [Google Scholar]
- Verbeuren T. J., Jordaens F. H., Van Hove C. E., Van Hoydonck A. E., Herman A. G. Release and vascular activity of endothelium-derived relaxing factor in atherosclerotic rabbit aorta. Eur J Pharmacol. 1990 Nov 27;191(2):173–184. doi: 10.1016/0014-2999(90)94145-n. [DOI] [PubMed] [Google Scholar]
- Verbeuren T. J., Jordaens F. H., Zonnekeyn L. L., Van Hove C. E., Coene M. C., Herman A. G. Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res. 1986 Apr;58(4):552–564. doi: 10.1161/01.res.58.4.552. [DOI] [PubMed] [Google Scholar]
- Vita J. A., Treasure C. B., Nabel E. G., McLenachan J. M., Fish R. D., Yeung A. C., Vekshtein V. I., Selwyn A. P., Ganz P. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation. 1990 Feb;81(2):491–497. doi: 10.1161/01.cir.81.2.491. [DOI] [PubMed] [Google Scholar]
- Vrints C. J., Bult H., Bosmans J., Herman A. G., Snoeck J. P. Paradoxical vasoconstriction as result of acetylcholine and serotonin in diseased human coronary arteries. Eur Heart J. 1992 Jun;13(6):824–831. doi: 10.1093/oxfordjournals.eurheartj.a060264. [DOI] [PubMed] [Google Scholar]
- Vrints C. J., Bult H., Hitter E., Herman A. G., Snoeck J. P. Impaired endothelium-dependent cholinergic coronary vasodilation in patients with angina and normal coronary arteriograms. J Am Coll Cardiol. 1992 Jan;19(1):21–31. doi: 10.1016/0735-1097(92)90046-p. [DOI] [PubMed] [Google Scholar]
- Walter R., Schaffner A., Schoedon G. Differential regulation of constitutive and inducible nitric oxide production by inflammatory stimuli in murine endothelial cells. Biochem Biophys Res Commun. 1994 Jul 15;202(1):450–455. doi: 10.1006/bbrc.1994.1949. [DOI] [PubMed] [Google Scholar]
- Wang J. M., Chow S. N., Lin J. K. Oxidation of LDL by nitric oxide and its modification by superoxides in macrophage and cell-free systems. FEBS Lett. 1994 Apr 4;342(2):171–175. doi: 10.1016/0014-5793(94)80494-x. [DOI] [PubMed] [Google Scholar]
- Warner T. D., Mitchell J. A., Sheng H., Murad F. Effects of cyclic GMP on smooth muscle relaxation. Adv Pharmacol. 1994;26:171–194. doi: 10.1016/s1054-3589(08)60054-x. [DOI] [PubMed] [Google Scholar]
- Werns S. W., Walton J. A., Hsia H. H., Nabel E. G., Sanz M. L., Pitt B. Evidence of endothelial dysfunction in angiographically normal coronary arteries of patients with coronary artery disease. Circulation. 1989 Feb;79(2):287–291. doi: 10.1161/01.cir.79.2.287. [DOI] [PubMed] [Google Scholar]
- White C. R., Brock T. A., Chang L. Y., Crapo J., Briscoe P., Ku D., Bradley W. A., Gianturco S. H., Gore J., Freeman B. A. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1044–1048. doi: 10.1073/pnas.91.3.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wileman S. M., Mann G. E., Baydoun A. R. Induction of L-arginine transport and nitric oxide synthase in vascular smooth muscle cells: synergistic actions of pro-inflammatory cytokines and bacterial lipopolysaccharide. Br J Pharmacol. 1995 Dec;116(8):3243–3250. doi: 10.1111/j.1476-5381.1995.tb15131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wink D. A., Cook J. A., Pacelli R., Liebmann J., Krishna M. C., Mitchell J. B. Nitric oxide (NO) protects against cellular damage by reactive oxygen species. Toxicol Lett. 1995 Dec;82-83:221–226. doi: 10.1016/0378-4274(95)03557-5. [DOI] [PubMed] [Google Scholar]
- Wink D. A., Hanbauer I., Krishna M. C., DeGraff W., Gamson J., Mitchell J. B. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9813–9817. doi: 10.1073/pnas.90.21.9813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witztum J. L. Role of oxidised low density lipoprotein in atherogenesis. Br Heart J. 1993 Jan;69(1 Suppl):S12–S18. doi: 10.1136/hrt.69.1_suppl.s12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolf Y. G., Rasmussen L. M., Sherman Y., Bundens W. P., Hye R. J. Nitroglycerin decreases medial smooth muscle cell proliferation after arterial balloon injury. J Vasc Surg. 1995 Mar;21(3):499–504. doi: 10.1016/s0741-5214(95)70293-8. [DOI] [PubMed] [Google Scholar]
- Wood K. S., Buga G. M., Byrns R. E., Ignarro L. J. Vascular smooth muscle-derived relaxing factor (MDRF) and its close similarity to nitric oxide. Biochem Biophys Res Commun. 1990 Jul 16;170(1):80–88. doi: 10.1016/0006-291x(90)91243-l. [DOI] [PubMed] [Google Scholar]
- Xiong Y., Li Y. J., Yu X. J., Liu G. Z., Li N. S. Endogenous inhibitors of nitric oxide synthesis and lipid peroxidation in hyperlipidemic rabbits. Zhongguo Yao Li Xue Bao. 1996 Mar;17(2):149–152. [PubMed] [Google Scholar]
- Yamamoto H., Bossaller C., Cartwright J., Jr, Henry P. D. Videomicroscopic demonstration of defective cholinergic arteriolar vasodilation in atherosclerotic rabbit. J Clin Invest. 1988 Jun;81(6):1752–1758. doi: 10.1172/JCI113516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto Y., Tomoike H., Egashira K., Nakamura M. Attenuation of endothelium-related relaxation and enhanced responsiveness of vascular smooth muscle to histamine in spastic coronary arterial segments from miniature pigs. Circ Res. 1987 Dec;61(6):772–778. doi: 10.1161/01.res.61.6.772. [DOI] [PubMed] [Google Scholar]
- Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
- Yang X., Cai B., Sciacca R. R., Cannon P. J. Inhibition of inducible nitric oxide synthase in macrophages by oxidized low-density lipoproteins. Circ Res. 1994 Feb;74(2):318–328. doi: 10.1161/01.res.74.2.318. [DOI] [PubMed] [Google Scholar]
- Yasue H., Matsuyama K., Matsuyama K., Okumura K., Morikami Y., Ogawa H. Responses of angiographically normal human coronary arteries to intracoronary injection of acetylcholine by age and segment. Possible role of early coronary atherosclerosis. Circulation. 1990 Feb;81(2):482–490. doi: 10.1161/01.cir.81.2.482. [DOI] [PubMed] [Google Scholar]
- Yates M. T., Lambert L. E., Whitten J. P., McDonald I., Mano M., Ku G., Mao S. J. A protective role for nitric oxide in the oxidative modification of low density lipoproteins by mouse macrophages. FEBS Lett. 1992 Sep 7;309(2):135–138. doi: 10.1016/0014-5793(92)81081-v. [DOI] [PubMed] [Google Scholar]
- Yokoyama M., Akita H., Mizutani T., Fukuzaki H., Watanabe Y. Hyperreactivity of coronary arterial smooth muscles in response to ergonovine from rabbits with hereditary hyperlipidemia. Circ Res. 1983 Jul;53(1):63–71. doi: 10.1161/01.res.53.1.63. [DOI] [PubMed] [Google Scholar]
- Yu S. M., Huang Z. S., Wang C. Y., Teng C. M. Effects of hyperlipidemia on the vascular reactivity in the Wistar-Kyoto and spontaneously hypertensive rats. Eur J Pharmacol. 1993 Dec 1;248(4):289–295. doi: 10.1016/0926-6917(93)90002-8. [DOI] [PubMed] [Google Scholar]
- Yu X. J., Li Y. J., Xiong Y. Increase of an endogenous inhibitor of nitric oxide synthesis in serum of high cholesterol fed rabbits. Life Sci. 1994;54(12):753–758. doi: 10.1016/0024-3205(94)00443-9. [DOI] [PubMed] [Google Scholar]
- Zeiher A. M., Drexler H., Wollschläger H., Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation. 1991 Feb;83(2):391–401. doi: 10.1161/01.cir.83.2.391. [DOI] [PubMed] [Google Scholar]
- Zeiher A. M., Fisslthaler B., Schray-Utz B., Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res. 1995 Jun;76(6):980–986. doi: 10.1161/01.res.76.6.980. [DOI] [PubMed] [Google Scholar]
- Zulueta J. J., Yu F. S., Hertig I. A., Thannickal V. J., Hassoun P. M. Release of hydrogen peroxide in response to hypoxia-reoxygenation: role of an NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane. Am J Respir Cell Mol Biol. 1995 Jan;12(1):41–49. doi: 10.1165/ajrcmb.12.1.7529030. [DOI] [PubMed] [Google Scholar]
- de Groot H., Hegi U., Sies H. Loss of alpha-tocopherol upon exposure to nitric oxide or the sydnonimine SIN-1. FEBS Lett. 1993 Jan 4;315(2):139–142. doi: 10.1016/0014-5793(93)81150-x. [DOI] [PubMed] [Google Scholar]
- von der Leyen H. E., Gibbons G. H., Morishita R., Lewis N. P., Zhang L., Nakajima M., Kaneda Y., Cooke J. P., Dzau V. J. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1137–1141. doi: 10.1073/pnas.92.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]