Abstract
The study tests the role of thromboxane in modulating microvascular permeability in vitro. Cultured monolayers of bovine aortic endothelial cells were challenged with the thromboxane (Tx) mimic U46619. This led to disassembly of actin microfilaments, cell rounding, border retraction and interendotheHal gap formation. Pretreatment with the Tx receptor antagonist SQ 29,548 prevented the Tx mimic-induced cytoskeletal changes. The Tx mimic also altered endothelial cell barrier function. Increased permeability was indicated by the increased passage of labelled albumin across monolayers cultured on microcarriers, relative to untreated endothelial cells (p < 0.05). Furthermore, electron microscopy of endothelial cells cultured on the basement membrane of human placental amnion indicated increased permeability based on wide, interendotheHal gap formation and transit of the tracer horseradish peroxidase. Quantification of interendothelial gaps revealed an eleven-fold increase with the Tx mimic relative to untreated endothial cells (p < 0.05) and prevention by pretreatment with the Tx receptor antagonist (p < 0.05). These data indicate that Tx directly modulates the permeability of endothelial cell in vitro.
Full Text
The Full Text of this article is available as a PDF (799.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bates J. H., Rossi A., Milic-Emili J. Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol (1985) 1985 Jun;58(6):1840–1848. doi: 10.1152/jappl.1985.58.6.1840. [DOI] [PubMed] [Google Scholar]
- Battistini B., Filep J., Sirois P. Potent thromboxane-mediated in vitro bronchoconstrictor effect of endothelin in the guinea-pig. Eur J Pharmacol. 1990 Mar 13;178(1):141–142. doi: 10.1016/0014-2999(90)94808-b. [DOI] [PubMed] [Google Scholar]
- Belvisi M. G., Stretton C. D., Yacoub M., Barnes P. J. Nitric oxide is the endogenous neurotransmitter of bronchodilator nerves in humans. Eur J Pharmacol. 1992 Jan 14;210(2):221–222. doi: 10.1016/0014-2999(92)90676-u. [DOI] [PubMed] [Google Scholar]
- Calver A., Collier J., Vallance P. Nitric oxide and cardiovascular control. Exp Physiol. 1993 May;78(3):303–326. doi: 10.1113/expphysiol.1993.sp003687. [DOI] [PubMed] [Google Scholar]
- Dupuy P. M., Shore S. A., Drazen J. M., Frostell C., Hill W. A., Zapol W. M. Bronchodilator action of inhaled nitric oxide in guinea pigs. J Clin Invest. 1992 Aug;90(2):421–428. doi: 10.1172/JCI115877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flavahan N. A., Aarhus L. L., Rimele T. J., Vanhoutte P. M. Respiratory epithelium inhibits bronchial smooth muscle tone. J Appl Physiol (1985) 1985 Mar;58(3):834–838. doi: 10.1152/jappl.1985.58.3.834. [DOI] [PubMed] [Google Scholar]
- Frostell C., Fratacci M. D., Wain J. C., Jones R., Zapol W. M. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation. 1991 Jun;83(6):2038–2047. doi: 10.1161/01.cir.83.6.2038. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lerman A., Hildebrand F. L., Jr, Margulies K. B., O'Murchu B., Perrella M. A., Heublein D. M., Schwab T. R., Burnett J. C., Jr Endothelin: a new cardiovascular regulatory peptide. Mayo Clin Proc. 1990 Nov;65(11):1441–1455. doi: 10.1016/s0025-6196(12)62168-5. [DOI] [PubMed] [Google Scholar]
- Lüscher T. F., Yang Z., Tschudi M., von Segesser L., Stulz P., Boulanger C., Siebenmann R., Turina M., Bühler F. R. Interaction between endothelin-1 and endothelium-derived relaxing factor in human arteries and veins. Circ Res. 1990 Apr;66(4):1088–1094. doi: 10.1161/01.res.66.4.1088. [DOI] [PubMed] [Google Scholar]
- McLarty A. J., McGregor C. G., Miller V. M. Endothelium-derived factors modulate contraction of bronchial smooth muscle. Am J Physiol. 1993 May;264(5 Pt 2):R999–1003. doi: 10.1152/ajpregu.1993.264.5.R999. [DOI] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Pepke-Zaba J., Higenbottam T. W., Dinh-Xuan A. T., Stone D., Wallwork J. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet. 1991 Nov 9;338(8776):1173–1174. doi: 10.1016/0140-6736(91)92033-x. [DOI] [PubMed] [Google Scholar]
- Pernow J., Hemsén A., Lundberg J. M. Tissue specific distribution, clearance and vascular effects of endothelin in the pig. Biochem Biophys Res Commun. 1989 Jun 15;161(2):647–653. doi: 10.1016/0006-291x(89)92648-x. [DOI] [PubMed] [Google Scholar]
- Pison U., López F. A., Heidelmeyer C. F., Rossaint R., Falke K. J. Inhaled nitric oxide reverses hypoxic pulmonary vasoconstriction without impairing gas exchange. J Appl Physiol (1985) 1993 Mar;74(3):1287–1292. doi: 10.1152/jappl.1993.74.3.1287. [DOI] [PubMed] [Google Scholar]
- Richardson J. B. Noradrenergic inhibitory innervation of the lung. Lung. 1981;159(6):315–322. doi: 10.1007/BF02713931. [DOI] [PubMed] [Google Scholar]
- Rossaint R., Falke K. J., López F., Slama K., Pison U., Zapol W. M. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med. 1993 Feb 11;328(6):399–405. doi: 10.1056/NEJM199302113280605. [DOI] [PubMed] [Google Scholar]
- Sirviö M. L., Metsärinne K., Saijonmaa O., Fyhrquist F. Tissue distribution and half-life of 125I-endothelin in the rat: importance of pulmonary clearance. Biochem Biophys Res Commun. 1990 Mar 30;167(3):1191–1195. doi: 10.1016/0006-291x(90)90649-8. [DOI] [PubMed] [Google Scholar]
- Stuart-Smith K., Vanhoutte P. M. Airway epithelium modulates the responsiveness of porcine bronchial smooth muscle. J Appl Physiol (1985) 1988 Aug;65(2):721–727. doi: 10.1152/jappl.1988.65.2.721. [DOI] [PubMed] [Google Scholar]
- Uchida Y., Ninomiya H., Saotome M., Nomura A., Ohtsuka M., Yanagisawa M., Goto K., Masaki T., Hasegawa S. Endothelin, a novel vasoconstrictor peptide, as potent bronchoconstrictor. Eur J Pharmacol. 1988 Sep 13;154(2):227–228. doi: 10.1016/0014-2999(88)90106-9. [DOI] [PubMed] [Google Scholar]
- Watson N., Maclagan J., Barnes P. J. Vagal control of guinea pig tracheal smooth muscle: lack of involvement of VIP or nitric oxide. J Appl Physiol (1985) 1993 Apr;74(4):1964–1971. doi: 10.1152/jappl.1993.74.4.1964. [DOI] [PubMed] [Google Scholar]
- Wennmalm A., Benthin G., Petersson A. S. Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood on the oxygenation of its red cell haemoglobin. Br J Pharmacol. 1992 Jul;106(3):507–508. doi: 10.1111/j.1476-5381.1992.tb14365.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White S. R., Hathaway D. P., Umans J. G., Leff A. R. Direct effects on airway smooth muscle contractile response caused by endothelin-1 in guinea pig trachealis. Am Rev Respir Dis. 1992 Feb;145(2 Pt 1):491–493. doi: 10.1164/ajrccm/145.2_Pt_1.491. [DOI] [PubMed] [Google Scholar]
- Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]