Abstract
These experiments were done to determine if interference with energy metabolism and REDOX biochemistry during low LET radiation exposure would alter the ability of medium harvested from the irradiated cells to induce a bystander effect in unirradiated cells. Human keratinocyte cells and CHO-K1 mutant cell lines were irradiated using cobalt 60. Clonogenic assays were used to determine the reproductive death of the cells exposed to direct irradiation or medium from irradiated cells. The persistence in progeny was also examined. Use of apoptosis inhibitors or medium from the LDH or G6PD null cell lines, reduced or prevented the bystander effect. Transfection with G6PD recovered the effect. Treatment with anti-oxidant substances, L -lactate and L -deprenyl prevented bystander factor associated cell kill. The lactate analogue, oxamate, was less effective. Data from experiments where media harvested from the different cell lines was exchanged suggest that signal production and cellular response may involve different mechanisms. The effects on exposed cells were transmitted to progeny which also showed excessive levels of cell death for several generations. The results suggest that energy/REDOX metabolism may be involved in the expression of a radiation induced bystander response. Given the aberrant energy metabolism in tumour cells, this may have implications for dose escalation in radiotherapy. © 2000 Cancer Research Campaign
Keywords: radiation-induced bystander effect, mitochondria, epigenetic radiation mechanisms
Full Text
The Full Text of this article is available as a PDF (85.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clutton S. M., Townsend K. M., Walker C., Ansell J. D., Wright E. G. Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures. Carcinogenesis. 1996 Aug;17(8):1633–1639. doi: 10.1093/carcin/17.8.1633. [DOI] [PubMed] [Google Scholar]
- Deshpande A., Goodwin E. H., Bailey S. M., Marrone B. L., Lehnert B. E. Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts: evidence for an extranuclear target. Radiat Res. 1996 Mar;145(3):260–267. [PubMed] [Google Scholar]
- Emerit I., Filipe P., Meunier P., Auclair C., Freitas J., Deroussent A., Gouyette A., Fernandes A. Clastogenic activity in the plasma of scleroderma patients: a biomarker of oxidative stress. Dermatology. 1997;194(2):140–146. doi: 10.1159/000246083. [DOI] [PubMed] [Google Scholar]
- Green D. R., Reed J. C. Mitochondria and apoptosis. Science. 1998 Aug 28;281(5381):1309–1312. doi: 10.1126/science.281.5381.1309. [DOI] [PubMed] [Google Scholar]
- Hockenbery D., Nuñez G., Milliman C., Schreiber R. D., Korsmeyer S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990 Nov 22;348(6299):334–336. doi: 10.1038/348334a0. [DOI] [PubMed] [Google Scholar]
- Jacobson M. D., Burne J. F., King M. P., Miyashita T., Reed J. C., Raff M. C. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature. 1993 Jan 28;361(6410):365–369. doi: 10.1038/361365a0. [DOI] [PubMed] [Google Scholar]
- Kluck R. M., Bossy-Wetzel E., Green D. R., Newmeyer D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997 Feb 21;275(5303):1132–1136. doi: 10.1126/science.275.5303.1132. [DOI] [PubMed] [Google Scholar]
- Kroemer G., Zamzami N., Susin S. A. Mitochondrial control of apoptosis. Immunol Today. 1997 Jan;18(1):44–51. doi: 10.1016/s0167-5699(97)80014-x. [DOI] [PubMed] [Google Scholar]
- Lorimore S. A., Kadhim M. A., Pocock D. A., Papworth D., Stevens D. L., Goodhead D. T., Wright E. G. Chromosomal instability in the descendants of unirradiated surviving cells after alpha-particle irradiation. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5730–5733. doi: 10.1073/pnas.95.10.5730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mothersill C., Seymour C. B. Cell-cell contact during gamma irradiation is not required to induce a bystander effect in normal human keratinocytes: evidence for release during irradiation of a signal controlling survival into the medium. Radiat Res. 1998 Mar;149(3):256–262. [PubMed] [Google Scholar]
- Mothersill C., Seymour C. B. Effect of lactate on the recovery of CHO-KI cells from gamma radiation damage. Acta Radiol Oncol. 1986 Jan-Feb;25(1):71–76. doi: 10.3109/02841868609136381. [DOI] [PubMed] [Google Scholar]
- Mothersill C., Seymour C. B. Mechanisms and implications of genomic instability and other delayed effects of ionizing radiation exposure. Mutagenesis. 1998 Sep;13(5):421–426. doi: 10.1093/mutage/13.5.421. [DOI] [PubMed] [Google Scholar]
- Mothersill C., Seymour C. Lethal mutations and genomic instability. Int J Radiat Biol. 1997 Jun;71(6):751–758. doi: 10.1080/095530097143743. [DOI] [PubMed] [Google Scholar]
- Mothersill C., Seymour C. Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int J Radiat Biol. 1997 Apr;71(4):421–427. doi: 10.1080/095530097144030. [DOI] [PubMed] [Google Scholar]
- Nicholson D. W., Thornberry N. A. Caspases: killer proteases. Trends Biochem Sci. 1997 Aug;22(8):299–306. doi: 10.1016/s0968-0004(97)01085-2. [DOI] [PubMed] [Google Scholar]
- PUCK T. T., MARCUS P. I. Action of x-rays on mammalian cells. J Exp Med. 1956 May 1;103(5):653–666. doi: 10.1084/jem.103.5.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pirisi L., Yasumoto S., Feller M., Doniger J., DiPaolo J. A. Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA. J Virol. 1987 Apr;61(4):1061–1066. doi: 10.1128/jvi.61.4.1061-1066.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seymour C. B., Mothersill C. Delayed expression of lethal mutations and genomic instability in the progeny of human epithelial cells that survived in a bystander-killing environment. Radiat Oncol Investig. 1997;5(3):106–110. doi: 10.1002/(SICI)1520-6823(1997)5:3<106::AID-ROI4>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
- Seymour C. B., Mothersill C., Moriarty M. J. Glucose analogues alter the response of CHO-KI cells to gamma irradiation. Acta Radiol Oncol. 1985 Jul-Aug;24(4):351–356. doi: 10.3109/02841868509136064. [DOI] [PubMed] [Google Scholar]
- Seymour C. B., Mothersill C. The effect of glycolysis inhibitors on the radiation response of CHO-K1 cells. Radiat Environ Biophys. 1988;27(1):49–57. doi: 10.1007/BF01211109. [DOI] [PubMed] [Google Scholar]
- Seymour C. B., Mothersill C. The effect of glycolysis inhibitors on the recovery of CHO-K1 cells from split-dose irradiation. Acta Oncol. 1987;26(5):367–371. doi: 10.3109/02841868709104362. [DOI] [PubMed] [Google Scholar]
- Stamato T., Weinstein R., Peters B., Hu J., Doherty B., Giaccia A. Delayed mutation in Chinese hamster cells. Somat Cell Mol Genet. 1987 Jan;13(1):57–65. doi: 10.1007/BF02422299. [DOI] [PubMed] [Google Scholar]
- Thornberry N. A., Lazebnik Y. Caspases: enemies within. Science. 1998 Aug 28;281(5381):1312–1316. doi: 10.1126/science.281.5381.1312. [DOI] [PubMed] [Google Scholar]
- Villa P., Kaufmann S. H., Earnshaw W. C. Caspases and caspase inhibitors. Trends Biochem Sci. 1997 Oct;22(10):388–393. doi: 10.1016/s0968-0004(97)01107-9. [DOI] [PubMed] [Google Scholar]
- Zamzami N., Marchetti P., Castedo M., Hirsch T., Susin S. A., Masse B., Kroemer G. Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett. 1996 Apr 8;384(1):53–57. doi: 10.1016/0014-5793(96)00280-3. [DOI] [PubMed] [Google Scholar]