Abstract
[Arg6, D-Trp7,9, NmePhe8]-substance P (6–11) (antagonist G) inhibits small cell lung cancer (SCLC) growth and is entering Phase II clinical investigation for the treatment of SCLC. As well as acting as a neuropeptide receptor antagonist, antagonist G stimulates c-jun-N-terminal kinase (JNK) activity and apoptosis in SCLC cells. We extend these findings and show that the stimulation of JNK and apoptosis by antagonist G is dependent upon the generation of reactive oxygen species (ROS) being inhibited either by anoxia or the presence of N-acetyl cysteine (n-AC). Antagonist G is not intrinsically a free radical oxygen donor but stimulates free radical generation specifically within SCLC cells (6.2-fold) and increases the activity of the redox-sensitive transcription factor AP-1 by 61%. In keeping with this, antagonist G reduces cellular glutathione (GSH) levels (38% reduction) and stimulates ceramide production and lipid peroxidation (112% increase). At plasma concentrations achieved clinically in the phase I studies, antagonist G augments, more than additively, growth inhibition induced by etoposide. Our results suggest that antagonist G may be particularly effective as an additional treatment with standard chemotherapy in SCLC. These novel findings will be important for the clinical application of this new and exciting compound and for the future drug development of new agents to treat this aggressive cancer. © 2000 Cancer Research Campaign
Keywords: SCLC; [Arg6, D-Trp7,9, NmePhe8]-substance P (6–11); antagonist G; AP-1; apoptosis; ROS; chemosensitivity
Full Text
The Full Text of this article is available as a PDF (274.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Bush R. S., Jenkin R. D., Allt W. E., Beale F. A., Bean H., Dembo A. J., Pringle J. F. Definitive evidence for hypoxic cells influencing cure in cancer therapy. Br J Cancer Suppl. 1978 Jun;3:302–306. [PMC free article] [PubMed] [Google Scholar]
- Butterfield L., Storey B., Maas L., Heasley L. E. c-Jun NH2-terminal kinase regulation of the apoptotic response of small cell lung cancer cells to ultraviolet radiation. J Biol Chem. 1997 Apr 11;272(15):10110–10116. doi: 10.1074/jbc.272.15.10110. [DOI] [PubMed] [Google Scholar]
- Buttke T. M., Sandstrom P. A. Oxidative stress as a mediator of apoptosis. Immunol Today. 1994 Jan;15(1):7–10. doi: 10.1016/0167-5699(94)90018-3. [DOI] [PubMed] [Google Scholar]
- Carmichael J., Mitchell J. B., Friedman N., Gazdar A. F., Russo A. Glutathione and related enzyme activity in human lung cancer cell lines. Br J Cancer. 1988 Oct;58(4):437–440. doi: 10.1038/bjc.1988.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coso O. A., Chiariello M., Kalinec G., Kyriakis J. M., Woodgett J., Gutkind J. S. Transforming G protein-coupled receptors potently activate JNK (SAPK). Evidence for a divergence from the tyrosine kinase signaling pathway. J Biol Chem. 1995 Mar 10;270(10):5620–5624. doi: 10.1074/jbc.270.10.5620. [DOI] [PubMed] [Google Scholar]
- Cossarizza A., Franceschi C., Monti D., Salvioli S., Bellesia E., Rivabene R., Biondo L., Rainaldi G., Tinari A., Malorni W. Protective effect of N-acetylcysteine in tumor necrosis factor-alpha-induced apoptosis in U937 cells: the role of mitochondria. Exp Cell Res. 1995 Sep;220(1):232–240. doi: 10.1006/excr.1995.1311. [DOI] [PubMed] [Google Scholar]
- Cuttitta F., Carney D. N., Mulshine J., Moody T. W., Fedorko J., Fischler A., Minna J. D. Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. 1985 Aug 29-Sep 4Nature. 316(6031):823–826. doi: 10.1038/316823a0. [DOI] [PubMed] [Google Scholar]
- Devary Y., Gottlieb R. A., Lau L. F., Karin M. Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol Cell Biol. 1991 May;11(5):2804–2811. doi: 10.1128/mcb.11.5.2804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friesen C., Fulda S., Debatin K. M. Cytotoxic drugs and the CD95 pathway. Leukemia. 1999 Nov;13(11):1854–1858. doi: 10.1038/sj.leu.2401333. [DOI] [PubMed] [Google Scholar]
- Galeotti T., Masotti L., Borrello S., Casali E. Oxy-radical metabolism and control of tumour growth. Xenobiotica. 1991 Aug;21(8):1041–1051. doi: 10.3109/00498259109039544. [DOI] [PubMed] [Google Scholar]
- Gallo J. M., Brennan J., Hamilton T. C., Halbherr T., Laub P. B., Ozols R. F., O'Dwyer P. J. Time-dependent pharmacodynamic models in cancer chemotherapy: population pharmacodynamic model for glutathione depletion following modulation by buthionine sulfoximine (BSO) in a Phase I trial of melphalan and BSO. Cancer Res. 1995 Oct 15;55(20):4507–4511. [PubMed] [Google Scholar]
- Haimovitz-Friedman A., Kan C. C., Ehleiter D., Persaud R. S., McLoughlin M., Fuks Z., Kolesnick R. N. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med. 1994 Aug 1;180(2):525–535. doi: 10.1084/jem.180.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ihde D. C. Chemotherapy of lung cancer. N Engl J Med. 1992 Nov 12;327(20):1434–1441. doi: 10.1056/NEJM199211123272006. [DOI] [PubMed] [Google Scholar]
- Ikegaki N., Katsumata M., Minna J., Tsujimoto Y. Expression of bcl-2 in small cell lung carcinoma cells. Cancer Res. 1994 Jan 1;54(1):6–8. [PubMed] [Google Scholar]
- Jarpe M. B., Knall C., Mitchell F. M., Buhl A. M., Duzic E., Johnson G. L. [D-Arg1,D-Phe5,D-Trp7,9,Leu11]Substance P acts as a biased agonist toward neuropeptide and chemokine receptors. J Biol Chem. 1998 Jan 30;273(5):3097–3104. doi: 10.1074/jbc.273.5.3097. [DOI] [PubMed] [Google Scholar]
- Jarpe M. B., Widmann C., Knall C., Schlesinger T. K., Gibson S., Yujiri T., Fanger G. R., Gelfand E. W., Johnson G. L. Anti-apoptotic versus pro-apoptotic signal transduction: checkpoints and stop signs along the road to death. Oncogene. 1998 Sep 17;17(11 REVIEWS):1475–1482. doi: 10.1038/sj.onc.1202183. [DOI] [PubMed] [Google Scholar]
- Jayadev S., Linardic C. M., Hannun Y. A. Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor alpha. J Biol Chem. 1994 Feb 25;269(8):5757–5763. [PubMed] [Google Scholar]
- Jonkman-de Vries J. D., Rosing H., Talsma H., Henrar R. E., Kettenes-van den Bosch J. J., Bult A., Beijnen J. H. Pharmaceutical development of a parenteral lyophilized formulation of the investigational antitumor neuropeptide antagonist [Arg6, D-Trp7,9, MePhe8]-Substance P [6-11]. Invest New Drugs. 1998;16(2):99–111. doi: 10.1023/a:1006041024109. [DOI] [PubMed] [Google Scholar]
- Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyprianou N., English H. F., Davidson N. E., Isaacs J. T. Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res. 1991 Jan 1;51(1):162–166. [PubMed] [Google Scholar]
- Lander H. M., Jacovina A. T., Davis R. J., Tauras J. M. Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J Biol Chem. 1996 Aug 16;271(33):19705–19709. doi: 10.1074/jbc.271.33.19705. [DOI] [PubMed] [Google Scholar]
- Le-Niculescu H., Bonfoco E., Kasuya Y., Claret F. X., Green D. R., Karin M. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol. 1999 Jan;19(1):751–763. doi: 10.1128/mcb.19.1.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu B., Hannun Y. A. Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem. 1997 Jun 27;272(26):16281–16287. doi: 10.1074/jbc.272.26.16281. [DOI] [PubMed] [Google Scholar]
- Lo Y. Y., Cruz T. F. Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem. 1995 May 19;270(20):11727–11730. doi: 10.1074/jbc.270.20.11727. [DOI] [PubMed] [Google Scholar]
- Melloni B., Lefebvre M. A., Bonnaud F., Vergnenègre A., Grossin L., Rigaud M., Cantin A. Antioxidant activity in bronchoalveolar lavage fluid from patients with lung cancer. Am J Respir Crit Care Med. 1996 Dec;154(6 Pt 1):1706–1711. doi: 10.1164/ajrccm.154.6.8970359. [DOI] [PubMed] [Google Scholar]
- Mitchell F. M., Heasley L. E., Qian N. X., Zamarripa J., Johnson G. L. Differential modulation of bombesin-stimulated phospholipase C beta and mitogen-activated protein kinase activity by [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P. J Biol Chem. 1995 Apr 14;270(15):8623–8628. doi: 10.1074/jbc.270.15.8623. [DOI] [PubMed] [Google Scholar]
- Moody T. W., Pert C. B., Gazdar A. F., Carney D. N., Minna J. D. High levels of intracellular bombesin characterize human small-cell lung carcinoma. Science. 1981 Dec 11;214(4526):1246–1248. doi: 10.1126/science.6272398. [DOI] [PubMed] [Google Scholar]
- Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979 Jun;95(2):351–358. doi: 10.1016/0003-2697(79)90738-3. [DOI] [PubMed] [Google Scholar]
- Peña L. A., Fuks Z., Kolesnick R. Stress-induced apoptosis and the sphingomyelin pathway. Biochem Pharmacol. 1997 Mar 7;53(5):615–621. doi: 10.1016/s0006-2952(96)00834-9. [DOI] [PubMed] [Google Scholar]
- Quillet-Mary A., Jaffrézou J. P., Mansat V., Bordier C., Naval J., Laurent G. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997 Aug 22;272(34):21388–21395. doi: 10.1074/jbc.272.34.21388. [DOI] [PubMed] [Google Scholar]
- Russo A., Mitchell J. B., McPherson S., Friedman N. Alteration of bleomycin cytotoxicity by glutathione depletion or elevation. Int J Radiat Oncol Biol Phys. 1984 Sep;10(9):1675–1678. doi: 10.1016/0360-3016(84)90526-1. [DOI] [PubMed] [Google Scholar]
- Seckl M. J., Higgins T., Rozengurt E. [D-Arg1,D-Trp5,7,9,Leu11]Substance P coordinately and reversibly inhibits bombesin- and vasopressin-induced signal transduction pathways in Swiss 3T3 cells. J Biol Chem. 1996 Nov 15;271(46):29453–29460. doi: 10.1074/jbc.271.46.29453. [DOI] [PubMed] [Google Scholar]
- Seckl M. J., Higgins T., Widmer F., Rozengurt E. [D-Arg1,D-Trp5,7,9,Leu11]substance P: a novel potent inhibitor of signal transduction and growth in vitro and in vivo in small cell lung cancer cells. Cancer Res. 1997 Jan 1;57(1):51–54. [PubMed] [Google Scholar]
- Seckl M. J., Newman R. H., Freemont P. S., Rozengurt E. Substance P-related antagonists inhibit vasopressin and bombesin but not 5'-3-O-(thio)triphosphate-stimulated inositol phosphate production in Swiss 3T3 cells. J Cell Physiol. 1995 Apr;163(1):87–95. doi: 10.1002/jcp.1041630110. [DOI] [PubMed] [Google Scholar]
- Sethi T., Langdon S., Smyth J., Rozengurt E. Growth of small cell lung cancer cells: stimulation by multiple neuropeptides and inhibition by broad spectrum antagonists in vitro and in vivo. Cancer Res. 1992 May 1;52(9 Suppl):2737s–2742s. [PubMed] [Google Scholar]
- Sethi T., Rozengurt E. Multiple neuropeptides stimulate clonal growth of small cell lung cancer: effects of bradykinin, vasopressin, cholecystokinin, galanin, and neurotensin. Cancer Res. 1991 Jul 1;51(13):3621–3623. [PubMed] [Google Scholar]
- Smyth J. F., Fowlie S. M., Gregor A., Crompton G. K., Busuttil A., Leonard R. C., Grant I. W. The impact of chemotherapy on small cell carcinoma of the bronchus. Q J Med. 1986 Oct;61(234):969–976. [PubMed] [Google Scholar]
- Staal F. J., Roederer M., Herzenberg L. A., Herzenberg L. A. Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9943–9947. doi: 10.1073/pnas.87.24.9943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tallett A., Chilvers E. R., Hannah S., Dransfield I., Lawson M. F., Haslett C., Sethi T. Inhibition of neuropeptide-stimulated tyrosine phosphorylation and tyrosine kinase activity stimulates apoptosis in small cell lung cancer cells. Cancer Res. 1996 Sep 15;56(18):4255–4263. [PubMed] [Google Scholar]
- Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
- Verheij M., Bose R., Lin X. H., Yao B., Jarvis W. D., Grant S., Birrer M. J., Szabo E., Zon L. I., Kyriakis J. M. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996 Mar 7;380(6569):75–79. doi: 10.1038/380075a0. [DOI] [PubMed] [Google Scholar]
- Woll P. J., Rozengurt E. [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P, a potent bombesin antagonist in murine Swiss 3T3 cells, inhibits the growth of human small cell lung cancer cells in vitro. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1859–1863. doi: 10.1073/pnas.85.6.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zamzami N., Marchetti P., Castedo M., Decaudin D., Macho A., Hirsch T., Susin S. A., Petit P. X., Mignotte B., Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995 Aug 1;182(2):367–377. doi: 10.1084/jem.182.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
