Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1993 Oct;67(10):6322–6326. doi: 10.1128/jvi.67.10.6322-6326.1993

Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1.

P Sova 1, D J Volsky 1
PMCID: PMC238061  PMID: 8371360

Abstract

The rate-limiting steps in infection by human immunodeficiency virus type 1 (HIV-1) deficient in the viral infectivity factor, Vif, are unknown. As a measurement of completion of the early stages of the HIV-1 life cycle, the levels of viral DNA were examined by polymerase chain reaction amplification during infection by vif-positive and vif-negative viruses of MT-2 and H9 cells, in which vif is required for HIV-1 replication. Viral DNA was detected within hours of infection by both viruses, but the accumulation of vif-negative virus DNA was impeded in terms of both extent and kinetics. Inefficient viral DNA synthesis correlated with restricted replication of the vif-negative virus. Increasing the input dose of vif-negative virus increased viral DNA levels within 24 h of infection but failed to overcome the block to subsequent DNA synthesis and productive infection. Infection of C8166 cells, in which vif function is dispensable, resulted in efficient DNA synthesis by vif-positive and vif-negative viruses. We conclude that one defect in the replication of vif-negative HIV-1 in nonpermissive cells occurs prior to or during viral DNA synthesis and may reflect processes required for efficient nucleocapsid internalization or activation of reverse transcription.

Full text

PDF
6323

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akari H., Sakuragi J., Takebe Y., Tomonaga K., Kawamura M., Fukasawa M., Miura T., Shinjo T., Hayami M. Biological characterization of human immunodeficiency virus type 1 and type 2 mutants in human peripheral blood mononuclear cells. Arch Virol. 1992;123(1-2):157–167. doi: 10.1007/BF01317146. [DOI] [PubMed] [Google Scholar]
  2. Arya S. K. 3'-orf and sor genes of human immunodeficiency virus: in vitro transcription-translation and immunoreactive domains. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5429–5433. doi: 10.1073/pnas.84.15.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bauer H. M., Ting Y., Greer C. E., Chambers J. C., Tashiro C. J., Chimera J., Reingold A., Manos M. M. Genital human papillomavirus infection in female university students as determined by a PCR-based method. JAMA. 1991 Jan 23;265(4):472–477. [PubMed] [Google Scholar]
  4. Clouse K. A., Powell D., Washington I., Poli G., Strebel K., Farrar W., Barstad P., Kovacs J., Fauci A. S., Folks T. M. Monokine regulation of human immunodeficiency virus-1 expression in a chronically infected human T cell clone. J Immunol. 1989 Jan 15;142(2):431–438. [PubMed] [Google Scholar]
  5. Collin M., James W., Gordon S. Development of techniques to analyse the formation of HIV provirus in primary human macrophages. Res Virol. 1991 Mar-Jun;142(2-3):105–112. doi: 10.1016/0923-2516(91)90045-5. [DOI] [PubMed] [Google Scholar]
  6. Fan L., Peden K. Cell-free transmission of Vif mutants of HIV-1. Virology. 1992 Sep;190(1):19–29. doi: 10.1016/0042-6822(92)91188-z. [DOI] [PubMed] [Google Scholar]
  7. Fisher A. G., Ensoli B., Ivanoff L., Chamberlain M., Petteway S., Ratner L., Gallo R. C., Wong-Staal F. The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science. 1987 Aug 21;237(4817):888–893. doi: 10.1126/science.3497453. [DOI] [PubMed] [Google Scholar]
  8. Gabuzda D. H., Lawrence K., Langhoff E., Terwilliger E., Dorfman T., Haseltine W. A., Sodroski J. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol. 1992 Nov;66(11):6489–6495. doi: 10.1128/jvi.66.11.6489-6495.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garrett E. D., Tiley L. S., Cullen B. R. Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. J Virol. 1991 Mar;65(3):1653–1657. doi: 10.1128/jvi.65.3.1653-1657.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harada S., Koyanagi Y., Yamamoto N. Infection of HTLV-III/LAV in HTLV-I-carrying cells MT-2 and MT-4 and application in a plaque assay. Science. 1985 Aug 9;229(4713):563–566. doi: 10.1126/science.2992081. [DOI] [PubMed] [Google Scholar]
  11. Hewlett I. K., Geyer S. J., Hawthorne C. A., Ruta M., Epstein J. S. Kinetics of early HIV-1 gene expression in infected H9 cells assessed by PCR. Oncogene. 1991 Mar;6(3):491–493. [PubMed] [Google Scholar]
  12. Kan N. C., Franchini G., Wong-Staal F., DuBois G. C., Robey W. G., Lautenberger J. A., Papas T. S. Identification of HTLV-III/LAV sor gene product and detection of antibodies in human sera. Science. 1986 Mar 28;231(4745):1553–1555. doi: 10.1126/science.3006245. [DOI] [PubMed] [Google Scholar]
  13. Kim S. Y., Byrn R., Groopman J., Baltimore D. Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J Virol. 1989 Sep;63(9):3708–3713. doi: 10.1128/jvi.63.9.3708-3713.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kishi M., Nishino Y., Sumiya M., Ohki K., Kimura T., Goto T., Nakai M., Kakinuma M., Ikuta K. Cells surviving infection by human immunodeficiency virus type 1: vif or vpu mutants produce non-infectious or markedly less cytopathic viruses. J Gen Virol. 1992 Jan;73(Pt 1):77–87. doi: 10.1099/0022-1317-73-1-77. [DOI] [PubMed] [Google Scholar]
  15. Klotman M. E., Kim S., Buchbinder A., DeRossi A., Baltimore D., Wong-Staal F. Kinetics of expression of multiply spliced RNA in early human immunodeficiency virus type 1 infection of lymphocytes and monocytes. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):5011–5015. doi: 10.1073/pnas.88.11.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee T. H., Coligan J. E., Allan J. S., McLane M. F., Groopman J. E., Essex M. A new HTLV-III/LAV protein encoded by a gene found in cytopathic retroviruses. Science. 1986 Mar 28;231(4745):1546–1549. doi: 10.1126/science.3006243. [DOI] [PubMed] [Google Scholar]
  17. Lori F., di Marzo Veronese F., de Vico A. L., Lusso P., Reitz M. S., Jr, Gallo R. C. Viral DNA carried by human immunodeficiency virus type 1 virions. J Virol. 1992 Aug;66(8):5067–5074. doi: 10.1128/jvi.66.8.5067-5074.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ma X. Y., Sakai K., Sinangil F., Golub E., Volsky D. J. Interaction of a noncytopathic human immunodeficiency virus type 1 (HIV-1) with target cells: efficient virus entry followed by delayed expression of its RNA and protein. Virology. 1990 May;176(1):184–194. doi: 10.1016/0042-6822(90)90243-k. [DOI] [PubMed] [Google Scholar]
  19. Miyoshi I., Kubonishi I., Yoshimoto S., Akagi T., Ohtsuki Y., Shiraishi Y., Nagata K., Hinuma Y. Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature. 1981 Dec 24;294(5843):770–771. doi: 10.1038/294770a0. [DOI] [PubMed] [Google Scholar]
  20. Nishino Y., Kishi M., Sumiya M., Ogawa K., Adachi A., Maotani-Imai K., Kato S., Hirai K., Ikuta K. Human immunodeficiency virus type 1 vif, vpr, and vpu mutants can produce persistently infected cells. Arch Virol. 1991;120(3-4):181–192. doi: 10.1007/BF01310474. [DOI] [PubMed] [Google Scholar]
  21. Oberste M. S., Gonda M. A. Conservation of amino-acid sequence motifs in lentivirus Vif proteins. Virus Genes. 1992 Jan;6(1):95–102. doi: 10.1007/BF01703760. [DOI] [PubMed] [Google Scholar]
  22. Ou C. Y., Kwok S., Mitchell S. W., Mack D. H., Sninsky J. J., Krebs J. W., Feorino P., Warfield D., Schochetman G. DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science. 1988 Jan 15;239(4837):295–297. doi: 10.1126/science.3336784. [DOI] [PubMed] [Google Scholar]
  23. Pauza C. D., Galindo J. E., Richman D. D. Reinfection results in accumulation of unintegrated viral DNA in cytopathic and persistent human immunodeficiency virus type 1 infection of CEM cells. J Exp Med. 1990 Oct 1;172(4):1035–1042. doi: 10.1084/jem.172.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Popovic M., Sarngadharan M. G., Read E., Gallo R. C. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984 May 4;224(4648):497–500. doi: 10.1126/science.6200935. [DOI] [PubMed] [Google Scholar]
  25. Robinson H. L., Zinkus D. M. Accumulation of human immunodeficiency virus type 1 DNA in T cells: results of multiple infection events. J Virol. 1990 Oct;64(10):4836–4841. doi: 10.1128/jvi.64.10.4836-4841.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sakai H., Shibata R., Sakuragi J., Sakuragi S., Kawamura M., Adachi A. Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. J Virol. 1993 Mar;67(3):1663–1666. doi: 10.1128/jvi.67.3.1663-1666.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sakai K., Dewhurst S., Ma X. Y., Volsky D. J. Differences in cytopathogenicity and host cell range among infectious molecular clones of human immunodeficiency virus type 1 simultaneously isolated from an individual. J Virol. 1988 Nov;62(11):4078–4085. doi: 10.1128/jvi.62.11.4078-4085.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sakai K., Ma X. Y., Gordienko I., Volsky D. J. Recombinational analysis of a natural noncytopathic human immunodeficiency virus type 1 (HIV-1) isolate: role of the vif gene in HIV-1 infection kinetics and cytopathicity. J Virol. 1991 Nov;65(11):5765–5773. doi: 10.1128/jvi.65.11.5765-5773.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Salahuddin S. Z., Markham P. D., Wong-Staal F., Franchini G., Kalyanaraman V. S., Gallo R. C. Restricted expression of human T-cell leukemia--lymphoma virus (HTLV) in transformed human umbilical cord blood lymphocytes. Virology. 1983 Aug;129(1):51–64. doi: 10.1016/0042-6822(83)90395-1. [DOI] [PubMed] [Google Scholar]
  30. Schwander S., Braun R. W., Kühn J. E., Hufert F. T., Kern P., Dietrich M., Wieland U. Prevalence of antibodies to recombinant virion infectivity factor in the sera of prospectively studied patients with HIV-1 infection. J Med Virol. 1992 Feb;36(2):142–146. doi: 10.1002/jmv.1890360212. [DOI] [PubMed] [Google Scholar]
  31. Schwartz S., Felber B. K., Pavlakis G. N. Expression of human immunodeficiency virus type 1 vif and vpr mRNAs is Rev-dependent and regulated by splicing. Virology. 1991 Aug;183(2):677–686. doi: 10.1016/0042-6822(91)90996-o. [DOI] [PubMed] [Google Scholar]
  32. Sodroski J., Goh W. C., Rosen C., Tartar A., Portetelle D., Burny A., Haseltine W. Replicative and cytopathic potential of HTLV-III/LAV with sor gene deletions. Science. 1986 Mar 28;231(4745):1549–1553. doi: 10.1126/science.3006244. [DOI] [PubMed] [Google Scholar]
  33. Strebel K., Daugherty D., Clouse K., Cohen D., Folks T., Martin M. A. The HIV 'A' (sor) gene product is essential for virus infectivity. Nature. 1987 Aug 20;328(6132):728–730. doi: 10.1038/328728a0. [DOI] [PubMed] [Google Scholar]
  34. Tomonaga K., Norimine J., Shin Y. S., Fukasawa M., Miyazawa T., Adachi A., Toyosaki T., Kawaguchi Y., Kai C., Mikami T. Identification of a feline immunodeficiency virus gene which is essential for cell-free virus infectivity. J Virol. 1992 Oct;66(10):6181–6185. doi: 10.1128/jvi.66.10.6181-6185.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Trono D. Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses. J Virol. 1992 Aug;66(8):4893–4900. doi: 10.1128/jvi.66.8.4893-4900.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Volsky D. J., Pellegrino M. G., Li G., Logan K. A., Aswell J. E., Lawrence N. P., Decker S. R. Titration of human immunodeficiency virus type 1 (HIV-1) and quantitative analysis of virus expression in vitro using liquid RNA-RNA hybridization. J Virol Methods. 1990 Jun;28(3):257–271. doi: 10.1016/0166-0934(90)90119-z. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES