Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1993 Nov;67(11):6698–6706. doi: 10.1128/jvi.67.11.6698-6706.1993

Central neuropathogenesis of vesicular stomatitis virus infection of immunodeficient mice.

B S Huneycutt 1, Z Bi 1, C J Aoki 1, C S Reiss 1
PMCID: PMC238109  PMID: 8105106

Abstract

To determine whether central neuropathogenesis associated with vesicular stomatitis virus (VSV) infection is regulated by T cells, we have examined the effects of intranasal infection of mice lacking T cells. The mice examined were of two kinds: (i) thymus-deficient BALB/c nu/nu nice and (ii) BALB/c mice experimentally depleted of T cells by systemic infusions of a monoclonal antibody to the CD4 or CD8 cell surface molecules. These mice were infected intranasally with a single dose of replication-competent VSV. Brain tissue homogenates were analyzed for the presence of infectious virus. For each population of mice, infection-related mortality was assessed. In histological sections of brain, the distribution of viral antigens (Ags) was examined by immunocytochemistry. We found that recovery of infectious virus from homogenates of tissues obtained from athymic nu/nu animals was more than 10 times greater than that from samples from their euthymic littermates. With a single exception in a BALB/c nu/nu mouse, virus was not isolated from the spleen when it was administered intranasally. In these experimental infections, athymic mice succumbed 1 to 2 days before their euthymic littermates. A dose of virus that resulted in half of the nu/+ survival rate was uniformly lethal to nu/nu mice. In experiments with BALB/c mice depleted of either CD4+ or CD8+ T cells by in vivo antibody treatment, histological analysis revealed an increase in viral Ag distribution in comparison with control (medium-infused) infected mice. Necrosis and inflammation paralleled the extent of viral Ag expression. Viral Ags were detected in discrete areas that usually remain uninfected in immunocompetent mice. These areas include the neocortex and caudate putamen nuclei, the piriform cortex, and the lateral olfactory tract. Neuronal loss and necrosis were consistently found in the olfactory bulb and the horizontal/vertical band of Broca. In some of the T-cell depleted mice, necrosis was also evident in the hippocampus, fimbria, mammillary bodies, and hypothalamic nuclei. In the brain stem, perivascular cuffing was evident, but with little necrosis. Collectively, these data suggest that CD4+ and CD8+ T cells make only a minor contribution to the development of histopathology but rather function together to limit viral replication and transsynaptic or ventricular spread of virus, thus promoting recovery. The primary effectors of histopathology appear to be related more to the cytopathologic nature of the virus infection and non-T-cell-mediated mechanisms.

Full text

PDF
6702

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan W., Tabi Z., Cleary A., Doherty P. C. Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells. J Immunol. 1990 May 15;144(10):3980–3986. [PubMed] [Google Scholar]
  2. Barger M. T., Craighead J. E. Immunomodulation of encephalomyocarditis virus-induced disease in A/J mice. J Virol. 1991 May;65(5):2676–2681. doi: 10.1128/jvi.65.5.2676-2681.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Browning M. J., Huang A. S., Reiss C. S. Cytolytic T lymphocytes from the BALB/c-H-2dm2 mouse recognize the vesicular stomatitis virus glycoprotein and are restricted by class II MHC antigens. J Immunol. 1990 Aug 1;145(3):985–994. [PubMed] [Google Scholar]
  4. Buchmeier M. J., Welsh R. M., Dutko F. J., Oldstone M. B. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  5. Coons W. J., Vorhies R. W., Johnson T. C. An immune cell population that responds to beta-endorphin and is responsible for protecting nude mice from the fatal consequences of a virus infection of the central nervous system. J Neuroimmunol. 1991 Nov;34(2-3):133–141. doi: 10.1016/0165-5728(91)90122-n. [DOI] [PubMed] [Google Scholar]
  6. Dal Canto M. C., Rabinowitz S. G., Johnson T. C. Subacute infection with temperature-sensitive vesicular stomatitis virus mutant G41 in the central nervous system of mice. II. Immunofluorescent, morphologic, and immunologic studies. J Infect Dis. 1979 Jan;139(1):36–51. doi: 10.1093/infdis/139.1.36. [DOI] [PubMed] [Google Scholar]
  7. Dal Canto M. C., Rabinowitz S. G. Murine central nervous system infection by a viral temperature-sensitive mutant: a subacute disease leading to demyelination. Am J Pathol. 1981 Mar;102(3):412–426. [PMC free article] [PubMed] [Google Scholar]
  8. Doll S. C., Johnson T. C. Beta-endorphin alters a viral induced central nervous system disease in normal mice but not in nude mice. J Neuroimmunol. 1989 Sep;24(1-2):47–53. doi: 10.1016/0165-5728(89)90097-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doll S. C., Johnson T. C. Reconstitution with T lymphocytes protects nude mice from a central nervous system disorder induced by a temperature-sensitive vesicular stomatitis virus. J Gen Virol. 1988 Aug;69(Pt 8):1969–1977. doi: 10.1099/0022-1317-69-8-1969. [DOI] [PubMed] [Google Scholar]
  10. Forger J. M., 3rd, Bronson R. T., Huang A. S., Reiss C. S. Murine infection by vesicular stomatitis virus: initial characterization of the H-2d system. J Virol. 1991 Sep;65(9):4950–4958. doi: 10.1128/jvi.65.9.4950-4958.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gogate N., Bakhiet M., Kristensson K., Norrby E., Olsson T. Gamma interferon expression and major histocompatibility complex induction during measles and vesicular stomatitis virus infections of the brain. J Neuroimmunol. 1991 Jan;31(1):19–26. doi: 10.1016/0165-5728(91)90082-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hickey W. F., Hsu B. L., Kimura H. T-lymphocyte entry into the central nervous system. J Neurosci Res. 1991 Feb;28(2):254–260. doi: 10.1002/jnr.490280213. [DOI] [PubMed] [Google Scholar]
  13. Huang A. S., Manders E. K. Ribonucleic acid synthesis of vesicular stomatitis virus. IV. Transcription by standard virus in the presence of defective interfering particles. J Virol. 1972 Jun;9(6):909–916. doi: 10.1128/jvi.9.6.909-916.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hummer H. J., Coons W. J., Watts S. A., Johnson T. C. Beta-endorphin alters the course of central nervous system disease induced by a temperature-sensitive vesicular stomatitis virus in reconstituted nude mice. J Neuroimmunol. 1990 Jun;28(1):73–82. doi: 10.1016/0165-5728(90)90042-l. [DOI] [PubMed] [Google Scholar]
  15. Karpus W. J., Swanborg R. H. CD4+ suppressor cells inhibit the function of effector cells of experimental autoimmune encephalomyelitis through a mechanism involving transforming growth factor-beta. J Immunol. 1991 Feb 15;146(4):1163–1168. [PubMed] [Google Scholar]
  16. Lindsley M. D., Rodriguez M. Characterization of the inflammatory response in the central nervous system of mice susceptible or resistant to demyelination by Theiler's virus. J Immunol. 1989 Apr 15;142(8):2677–2682. [PubMed] [Google Scholar]
  17. Lundh B., Kristensson K., Norrby E. Selective infections of olfactory and respiratory epithelium by vesicular stomatitis and Sendai viruses. Neuropathol Appl Neurobiol. 1987 Mar-Apr;13(2):111–122. doi: 10.1111/j.1365-2990.1987.tb00175.x. [DOI] [PubMed] [Google Scholar]
  18. Miyoshi K., Harter D. H., Hsu K. C. Neuropathological and immunofluorescence studies of experimental vesicular stomatitis virus encephalitis in mice. J Neuropathol Exp Neurol. 1971 Apr;30(2):266–277. doi: 10.1097/00005072-197104000-00008. [DOI] [PubMed] [Google Scholar]
  19. Mohammed A. K., Maehlen J., Magnusson O., Fonnum F., Kristensson K. Persistent changes in behaviour and brain serotonin during ageing in rats subjected to infant nasal virus infection. Neurobiol Aging. 1992 Jan-Feb;13(1):83–87. doi: 10.1016/0197-4580(92)90013-n. [DOI] [PubMed] [Google Scholar]
  20. Mohammed A. K., Magnusson O., Maehlen J., Fonnum F., Norrby E., Schultzberg M., Kristensson K. Behavioural deficits and serotonin depletion in adult rats after transient infant nasal viral infection. Neuroscience. 1990;35(2):355–363. doi: 10.1016/0306-4522(90)90089-M. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moskophidis D., Cobbold S. P., Waldmann H., Lehmann-Grube F. Mechanism of recovery from acute virus infection: treatment of lymphocytic choriomeningitis virus-infected mice with monoclonal antibodies reveals that Lyt-2+ T lymphocytes mediate clearance of virus and regulate the antiviral antibody response. J Virol. 1987 Jun;61(6):1867–1874. doi: 10.1128/jvi.61.6.1867-1874.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Muller D., Koller B. H., Whitton J. L., LaPan K. E., Brigman K. K., Frelinger J. A. LCMV-specific, class II-restricted cytotoxic T cells in beta 2-microglobulin-deficient mice. Science. 1992 Mar 20;255(5051):1576–1578. doi: 10.1126/science.1347959. [DOI] [PubMed] [Google Scholar]
  23. Perry L. L., Lodmell D. L. Role of CD4+ and CD8+ T cells in murine resistance to street rabies virus. J Virol. 1991 Jul;65(7):3429–3434. doi: 10.1128/jvi.65.7.3429-3434.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Petrarca M. A., Reiss C. S., Diamond D. C., Boni J., Burakoff S. J., Faller D. V. T cell hybridomas define the class II MHC-restricted response to vesicular stomatitis virus infection. Microb Pathog. 1988 Nov;5(5):319–332. doi: 10.1016/0882-4010(88)90033-2. [DOI] [PubMed] [Google Scholar]
  25. Reiss C. S., Chen S. S., Huang A. S., Doherty R. VSV G protein induces murine cytolytic T lymphocytes. Microb Pathog. 1986 Jun;1(3):261–267. doi: 10.1016/0882-4010(86)90050-1. [DOI] [PubMed] [Google Scholar]
  26. Reiss C. S., Evans G. A., Margulies D. H., Seidman J. G., Burakoff S. J. Allospecific and virus-specific cytolytic T lymphocytes are restricted to the N or C1 domain of H-2 antigens expressed on L cells after DNA-mediated gene transfer. Proc Natl Acad Sci U S A. 1983 May;80(9):2709–2712. doi: 10.1073/pnas.80.9.2709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reiss C. S., Gapud C. P., Keil W. Newly synthesized class II MHC chains are required for VSV G presentation to CTL clones. Cell Immunol. 1992 Jan;139(1):229–238. doi: 10.1016/0008-8749(92)90115-6. [DOI] [PubMed] [Google Scholar]
  28. Rodriguez M., Sriram S. Successful therapy of Theiler's virus-induced demyelination (DA strain) with monoclonal anti-Lyt-2 antibody. J Immunol. 1988 May 1;140(9):2950–2955. [PubMed] [Google Scholar]
  29. Stampfer M., Baltimore D., Huang A. S. Ribonucleic acid synthesis of vesicular stomatitis virus. I. Species of ribonucleic acid found in Chinese hamster ovary cells infected with plaque-forming and defective particles. J Virol. 1969 Aug;4(2):154–161. doi: 10.1128/jvi.4.2.154-161.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stitz L., Planz O., Bilzer T., Frei K., Fontana A. Transforming growth factor-beta modulates T cell-mediated encephalitis caused by Borna disease virus. Pathogenic importance of CD8+ cells and suppression of antibody formation. J Immunol. 1991 Nov 15;147(10):3581–3586. [PubMed] [Google Scholar]
  31. Sugamata M., Miyazawa M., Mori S., Spangrude G. J., Ewalt L. C., Lodmell D. L. Paralysis of street rabies virus-infected mice is dependent on T lymphocytes. J Virol. 1992 Feb;66(2):1252–1260. doi: 10.1128/jvi.66.2.1252-1260.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sullivan J. L., Mayner R. E., Barry D. W., Ennis F. A. Influenza virus infection in nude mice. J Infect Dis. 1976 Jan;133(1):91–94. doi: 10.1093/infdis/133.1.91. [DOI] [PubMed] [Google Scholar]
  33. Vandepol S. B., Holland J. J. Evolution of vesicular stomatitis virus in athymic nude mice: mutations associated with natural killer cell selection. J Gen Virol. 1986 Mar;67(Pt 3):441–451. doi: 10.1099/0022-1317-67-3-441. [DOI] [PubMed] [Google Scholar]
  34. Weiland F., Cox J. H., Meyer S., Dahme E., Reddehase M. J. Rabies virus neuritic paralysis: immunopathogenesis of nonfatal paralytic rabies. J Virol. 1992 Aug;66(8):5096–5099. doi: 10.1128/jvi.66.8.5096-5099.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Williamson J. S., Stohlman S. A. Effective clearance of mouse hepatitis virus from the central nervous system requires both CD4+ and CD8+ T cells. J Virol. 1990 Sep;64(9):4589–4592. doi: 10.1128/jvi.64.9.4589-4592.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES