Abstract
Plate count-monensin-KCl (PMK) agar, for enumeration of both gram-negative bacteria and Escherichia coli, is composed of (per liter) 23.5 g of plate count agar, 35 mg of monensin, 7.5 g of KCl, and 75 mg of 4-methylumbelliferyl-beta-D-glucuronide (MUG). Monensin was added after the medium was sterilized. The diluent of choice for use with PMK agar was 0.1% peptone (pH 6.8); other diluents were unsatisfactory. Gram-negative bacteria (selected for by the ionophore monensin) can be used to judge the general quality or sanitary history of a commodity. E. coli (differentiated by its ability to hydrolyze the fluorogenic compound MUG) can be used to assess the safety of a commodity in regard to the possible presence of enteric pathogens. Pure-culture studies demonstrated that monensin completely inhibited gram-positive bacteria and had little or no effect on gram-negative bacteria. When gram-negative bacteria were injured by one of several methods, a few species (including E. coli) became sensitive to monensin; this sensitivity was completely reversed in most instances by the inclusion of KCl in the medium. When PMK agar was tested with food and environmental samples, 96% of 535 isolates were gram negative; approximately 68% of colonies from nonselective medium were gram negative. PMK agar was more selective than two other media against gram-positive bacteria and was less inhibitory for gram-negative bacteria. However, with water samples, KCl had an inhibitory effect on gram-negative bacteria, and it should therefore be deleted from monensin-containing medium for water analysis.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cyzeska F. J., Seiter J. A., Marks S. N., Jay J. M. Culture medium for selective isolation and enumeration of Gram-negative bacteria from ground meats. Appl Environ Microbiol. 1981 Aug;42(2):303–307. doi: 10.1128/aem.42.2.303-307.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahlén G., Linde A. Screening plate method for detection of bacterial beta-glucuronidase. Appl Microbiol. 1973 Dec;26(6):863–866. doi: 10.1128/am.26.6.863-866.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dainty R. H., Shaw B. G., Roberts T. A. Microbial and chemical changes in chill-stored red meats. Soc Appl Bacteriol Symp Ser. 1983;11:151–178. [PubMed] [Google Scholar]
- Donnelly L. S., Hartman P. A. Gentamicin-based medium for the isolation of group D streptococci and application of the medium to water analysis. Appl Environ Microbiol. 1978 Mar;35(3):576–581. doi: 10.1128/aem.35.3.576-581.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dutkaand B. J., Tobin S. E. Study on the efficiency of four procedures for enumerating coliforms in water. Can J Microbiol. 1976 May;22(5):630–635. doi: 10.1139/m76-093. [DOI] [PubMed] [Google Scholar]
- Evans T. M., Seidler R. J., LeChevallier M. W. Impact of verification media and resuscitation on accuracy of the membrane filter total coliform enumeration technique. Appl Environ Microbiol. 1981 May;41(5):1144–1151. doi: 10.1128/aem.41.5.1144-1151.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans T. M., Waarvick C. E., Seidler R. J., LeChevallier M. W. Failure of the most-probable-number technique to detect coliforms in drinking water and raw water supplies. Appl Environ Microbiol. 1981 Jan;41(1):130–138. doi: 10.1128/aem.41.1.130-138.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feng P. C., Hartman P. A. Fluorogenic assays for immediate confirmation of Escherichia coli. Appl Environ Microbiol. 1982 Jun;43(6):1320–1329. doi: 10.1128/aem.43.6.1320-1329.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilian M., Bülow P. Rapid diagnosis of Enterobacteriaceae. I. Detection of bacterial glycosidases. Acta Pathol Microbiol Scand B. 1976 Oct;84B(5):245–251. doi: 10.1111/j.1699-0463.1976.tb01933.x. [DOI] [PubMed] [Google Scholar]
- Kodaka H., Armfield A. Y., Lombard G. L., Dowell V. R., Jr Practical procedure for demonstrating bacterial flagella. J Clin Microbiol. 1982 Nov;16(5):948–952. doi: 10.1128/jcm.16.5.948-952.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larkin J. M. Peptonized milk as an enumeration medium for soil bacteria. Appl Microbiol. 1972 May;23(5):1031–1032. doi: 10.1128/am.23.5.1031-1032.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Minor L., Buissière J., Novel G., Novel M. Relation entre le sérotype et l'activité beta-glucuronidasique chez les Salmonella. Ann Microbiol (Paris) 1978 Aug-Sep;129B(2):155–165. [PubMed] [Google Scholar]
- Massenti M. F., Scarlata G., Nastasi A. Beta-glucuronidase activity in Enterobacteriaceae. Boll Ist Sieroter Milan. 1981;60(1):26–30. [PubMed] [Google Scholar]
- McDonald L. C., Hackney C. R., Ray B. Enhanced recovery of injured Escherichia coli by compounds that degrade hydrogen peroxide or block its formation. Appl Environ Microbiol. 1983 Feb;45(2):360–365. doi: 10.1128/aem.45.2.360-365.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molin G., Ternström A. Numerical taxonomy of psychrotrophic pseudomonads. J Gen Microbiol. 1982 Jun;128(6):1249–1264. doi: 10.1099/00221287-128-6-1249. [DOI] [PubMed] [Google Scholar]
- Ray B., Janssen D. W., Busta F. F. Characterization of the repair of injury induced by freezing Salmonella anatum. Appl Microbiol. 1972 Apr;23(4):803–809. doi: 10.1128/am.23.4.803-809.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trepeta R. W., Edberg S. C. Methylumbelliferyl-beta-D-glucuronide-based medium for rapid isolation and identification of Escherichia coli. J Clin Microbiol. 1984 Feb;19(2):172–174. doi: 10.1128/jcm.19.2.172-174.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]