Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1985 Sep;50(3):693–695. doi: 10.1128/aem.50.3.693-695.1985

Genetic Recombination and Transformation in Protoplasts of Thermomonospora fusca

Kenneth A Pidcock 1, Bland S Montenecourt 1, Jeffrey A Sands 1,*
PMCID: PMC238691  PMID: 16346888

Abstract

Protoplasts were produced from the thermophilic actinomycete Thermomonospora fusca and were regenerated to 0.1% of the direct count on regeneration agar. Recombination after protoplast fusion was demonstrated with drug-resistant mutants of T. fusca YX. A single thiostrepton-resistant colony was isolated after transformation of T. fusca YX with the streptomycete vector pIJ702, providing the first evidence for transformation in the genus Thermomonospora and suggesting that some mesophilic streptomycete genes can be expressed in thermophilic actinomycetes. Of 20 thermophilic actinomycete strains isolated from self-heated composts, 3 were found to harbor native plasmid DNA, providing potential sequences for the development of Thermomonospora-Streptomyces shuttle vectors.

Full text

PDF
695

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chater K. F., Hopwood D. A., Kieser T., Thompson C. J. Gene cloning in Streptomyces. Curr Top Microbiol Immunol. 1982;96:69–95. doi: 10.1007/978-3-642-68315-2_5. [DOI] [PubMed] [Google Scholar]
  2. Cundliffe E. Mechanism of resistance to thiostrepton in the producing-organism Streptomyces azureus. Nature. 1978 Apr 27;272(5656):792–795. doi: 10.1038/272792a0. [DOI] [PubMed] [Google Scholar]
  3. Fennington G., Neubauer D., Stutzenberger F. Cellulase biosynthesis in a catabolite repression-resistant mutant of Thermomonospora curvata. Appl Environ Microbiol. 1984 Jan;47(1):201–204. doi: 10.1128/aem.47.1.201-204.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hirsch C. F., Christensen D. L. Novel method for selective isolation of actinomycetes. Appl Environ Microbiol. 1983 Oct;46(4):925–929. doi: 10.1128/aem.46.4.925-929.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Katz E., Thompson C. J., Hopwood D. A. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol. 1983 Sep;129(9):2703–2714. doi: 10.1099/00221287-129-9-2703. [DOI] [PubMed] [Google Scholar]
  6. Lacey J. Actinomycetes in soils, composts and fodders. Soc Appl Bacteriol Symp Ser. 1973 Jan;2:231–251. [PubMed] [Google Scholar]
  7. Okanishi M., Suzuki K., Umezawa H. Formation and reversion of Streptomycete protoplasts: cultural condition and morphological study. J Gen Microbiol. 1974 Feb;80(2):389–400. doi: 10.1099/00221287-80-2-389. [DOI] [PubMed] [Google Scholar]
  8. Thompson C. J., Ward J. M., Hopwood D. A. DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature. 1980 Jul 31;286(5772):525–527. doi: 10.1038/286525a0. [DOI] [PubMed] [Google Scholar]
  9. Zasloff M., Ginder G. D., Felsenfeld G. A new method for the purification and identification of covalently closed circular DNA molcules. Nucleic Acids Res. 1978 Apr;5(4):1139–1152. doi: 10.1093/nar/5.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES