Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1986 May;51(5):1141–1143. doi: 10.1128/aem.51.5.1141-1143.1986

Catabolism of Amino Acids by Megasphaera elsdenii LC1

R John Wallace 1
PMCID: PMC239026  PMID: 16347061

Abstract

The amino acids in an acid hydrolysate of casein were catabolized more extensively by Megasphaera elsdenii than those in an enzymic hydrolysate. Threonine and serine were most actively degraded, but no resultant increase in growth yield occurred. Branched-chain volatile fatty acid production, which increased as the dilution rate of a glucose-limited chemostat decreased, seemed to be associated with maintenance rather than with growth.

Full text

PDF
1143

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison M. J. Production of branched-chain volatile fatty acids by certain anaerobic bacteria. Appl Environ Microbiol. 1978 May;35(5):872–877. doi: 10.1128/aem.35.5.872-877.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dawson K. A., Preziosi M. C., Caldwell D. R. Some effects of uncouplers and inhibitors on growth and electron transport in rumen bacteria. J Bacteriol. 1979 Aug;139(2):384–392. doi: 10.1128/jb.139.2.384-392.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fell B. F., Kay M., Whitelaw F. G., Boyne R. Observations on the development of ruminal lesions in calves fed on barley. Res Vet Sci. 1968 Sep;9(5):458–466. [PubMed] [Google Scholar]
  4. HOBSON P. N. CONTINUOUS CULTURE OF RUMEN BACTERIA: APPARATUS. J Gen Microbiol. 1965 Feb;38:161–166. doi: 10.1099/00221287-38-2-161. [DOI] [PubMed] [Google Scholar]
  5. Harwood C. S., Canale-Parola E. Adenosine 5'-triphosphate- yielding pathways of branched-chain amino acid fermentation by a marine spirochete. J Bacteriol. 1981 Oct;148(1):117–123. doi: 10.1128/jb.148.1.117-123.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kurihara Y., Eadie J. M., Hobson P. N., Mann S. O. Relationship between bacteria and ciliate protozoa in the sheep rumen. J Gen Microbiol. 1968 Apr;51(2):267–288. doi: 10.1099/00221287-51-2-267. [DOI] [PubMed] [Google Scholar]
  7. LEWIS D., ELSDEN S. R. The fermentation of L-threonine, L-serine, L-cysteine and acrylic acid by a gram-negative coccus. Biochem J. 1955 Aug;60(4):683–692. doi: 10.1042/bj0600683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pirt S. J. The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224–231. doi: 10.1098/rspb.1965.0069. [DOI] [PubMed] [Google Scholar]
  9. Russell J. B., Baldwin R. L. Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture. Appl Environ Microbiol. 1979 Mar;37(3):537–543. doi: 10.1128/aem.37.3.537-543.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Russell J. B. Fermentation of Peptides by Bacteroides ruminicola B(1)4. Appl Environ Microbiol. 1983 May;45(5):1566–1574. doi: 10.1128/aem.45.5.1566-1574.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Scheifinger C., Russell N., Chalupa W. Degradation of amino acids by pure cultures of rumen bacteria. J Anim Sci. 1976 Oct;43(4):821–827. doi: 10.2527/jas1976.434821x. [DOI] [PubMed] [Google Scholar]
  12. Turnell D. C., Cooper J. D. Rapid assay for amino acids in serum or urine by pre-column derivatization and reversed-phase liquid chromatography. Clin Chem. 1982 Mar;28(3):527–531. [PubMed] [Google Scholar]
  13. Wallace R. J. Control of lactate production by Selenomonas ruminantium: homotropic activation of lactate dehydrogenase by pyruvate. J Gen Microbiol. 1978 Jul;107(1):45–52. doi: 10.1099/00221287-107-1-45. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES