Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1995 Sep;59(3):325–344. doi: 10.1128/mr.59.3.325-344.1995

Protein trafficking in kinetoplastid protozoa.

C Clayton 1, T Häusler 1, J Blattner 1
PMCID: PMC239364  PMID: 7565409

Abstract

The kinetoplastid protozoa infect hosts ranging from invertebrates to plants and mammals, causing diseases of medical and economic importance. They are the earliest-branching organisms in eucaryotic evolution to have either mitochondria or peroxisome-like microbodies. Investigation of their protein trafficking enables us to identify characteristics that have been conserved throughout eucaryotic evolution and also reveals how far variations, or alternative mechanisms, are possible. Protein trafficking in kinetoplastids is in many respects similar to that in higher eucaryotes, including mammals and yeasts. Differences in signal sequence specificities exist, however, for all subcellular locations so far examined in detail--microbodies, mitochondria, and endoplasmic reticulum--with signals being more degenerate, or shorter, than those of their higher eucaryotic counterparts. Some components of the normal array of trafficking mechanisms may be missing in most (if not all) kinetoplastids: examples are clathrin-coated vesicles, recycling receptors, and mannose 6-phosphate-mediated lysosomal targeting. Other aspects and structures are unique to the kinetoplastids or are as yet unexplained. Some of these peculiarities may eventually prove to be weak points that can be used as targets for chemotherapy; others may turn out to be much more widespread than currently suspected.

Full Text

The Full Text of this article is available as a PDF (374.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alarcon C. M., Son H. J., Hall T., Donelson J. E. A monocistronic transcript for a trypanosome variant surface glycoprotein. Mol Cell Biol. 1994 Aug;14(8):5579–5591. doi: 10.1128/mcb.14.8.5579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alexander K., Parsons M. Characterization of a divergent glycosomal microbody phosphoglycerate kinase from Trypanosoma brucei. Mol Biochem Parasitol. 1993 Aug;60(2):265–272. doi: 10.1016/0166-6851(93)90137-m. [DOI] [PubMed] [Google Scholar]
  3. Aman R. A., Wang C. C. An improved purification of glycosomes from the procyclic trypomastigotes of Trypanosoma brucei. Mol Biochem Parasitol. 1986 Dec;21(3):211–220. doi: 10.1016/0166-6851(86)90126-x. [DOI] [PubMed] [Google Scholar]
  4. Andrews N. W., Abrams C. K., Slatin S. L., Griffiths G. A T. cruzi-secreted protein immunologically related to the complement component C9: evidence for membrane pore-forming activity at low pH. Cell. 1990 Jun 29;61(7):1277–1287. doi: 10.1016/0092-8674(90)90692-8. [DOI] [PubMed] [Google Scholar]
  5. Andrews N. W., Whitlow M. B. Secretion by Trypanosoma cruzi of a hemolysin active at low pH. Mol Biochem Parasitol. 1989 Mar 15;33(3):249–256. doi: 10.1016/0166-6851(89)90086-8. [DOI] [PubMed] [Google Scholar]
  6. Araya J. E., Cano M. I., Yoshida N., da Silveira J. F. Cloning and characterization of a gene for the stage-specific 82-kDa surface antigen of metacyclic trypomastigotes of Trypanosoma cruzi. Mol Biochem Parasitol. 1994 May;65(1):161–169. doi: 10.1016/0166-6851(94)90124-4. [DOI] [PubMed] [Google Scholar]
  7. Bahr V., Stierhof Y. D., Ilg T., Demar M., Quinten M., Overath P. Expression of lipophosphoglycan, high-molecular weight phosphoglycan and glycoprotein 63 in promastigotes and amastigotes of Leishmania mexicana. Mol Biochem Parasitol. 1993 Mar;58(1):107–121. doi: 10.1016/0166-6851(93)90095-f. [DOI] [PubMed] [Google Scholar]
  8. Bangs J. D., Andrews N. W., Hart G. W., Englund P. T. Posttranslational modification and intracellular transport of a trypanosome variant surface glycoprotein. J Cell Biol. 1986 Jul;103(1):255–263. doi: 10.1083/jcb.103.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bangs J. D., Doering T. L., Englund P. T., Hart G. W. Biosynthesis of a variant surface glycoprotein of Trypanosoma brucei. Processing of the glycolipid membrane anchor and N-linked oligosaccharides. J Biol Chem. 1988 Nov 25;263(33):17697–17705. [PubMed] [Google Scholar]
  10. Bangs J. D., Uyetake L., Brickman M. J., Balber A. E., Boothroyd J. C. Molecular cloning and cellular localization of a BiP homologue in Trypanosoma brucei. Divergent ER retention signals in a lower eukaryote. J Cell Sci. 1993 Aug;105(Pt 4):1101–1113. doi: 10.1242/jcs.105.4.1101. [DOI] [PubMed] [Google Scholar]
  11. Bastin P., Coppens I., Saint-Remy J. M., Baudhuin P., Opperdoes F. R., Courtoy P. J. Identification of a specific epitope on the extracellular domain of the LDL-receptor of Trypanosoma brucei brucei. Mol Biochem Parasitol. 1994 Feb;63(2):193–202. doi: 10.1016/0166-6851(94)90055-8. [DOI] [PubMed] [Google Scholar]
  12. Bayne R. A., Kilbride E. A., Lainson F. A., Tetley L., Barry J. D. A major surface antigen of procyclic stage Trypanosoma congolense. Mol Biochem Parasitol. 1993 Oct;61(2):295–310. doi: 10.1016/0166-6851(93)90075-9. [DOI] [PubMed] [Google Scholar]
  13. Benaim G., Lopez-Estraño C., Docampo R., Moreno S. N. A calmodulin-stimulated Ca2+ pump in plasma-membrane vesicles from Trypanosoma brucei; selective inhibition by pentamidine. Biochem J. 1993 Dec 15;296(Pt 3):759–763. doi: 10.1042/bj2960759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Blattner J., Dörsam H., Clatyon C. E. Function of N-terminal import signals in trypanosome microbodies. FEBS Lett. 1995 Mar 6;360(3):310–314. doi: 10.1016/0014-5793(95)00128-v. [DOI] [PubMed] [Google Scholar]
  15. Blattner J., Swinkels B., Dörsam H., Prospero T., Subramani S., Clayton C. Glycosome assembly in trypanosomes: variations in the acceptable degeneracy of a COOH-terminal microbody targeting signal. J Cell Biol. 1992 Dec;119(5):1129–1136. doi: 10.1083/jcb.119.5.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bock J. H., Langer P. J. Sequence and genomic organization of the hsp70 genes of Leishmania amazonensis. Mol Biochem Parasitol. 1993 Dec;62(2):187–197. doi: 10.1016/0166-6851(93)90108-a. [DOI] [PubMed] [Google Scholar]
  17. Borst P. Peroxisome biogenesis revisited. Biochim Biophys Acta. 1989 Jun 1;1008(1):1–13. doi: 10.1016/0167-4781(89)90163-2. [DOI] [PubMed] [Google Scholar]
  18. Borst P. Transferrin receptor, antigenic variation and the prospect of a trypanosome vaccine. Trends Genet. 1991 Oct;7(10):307–309. doi: 10.1016/0168-9525(91)90406-g. [DOI] [PubMed] [Google Scholar]
  19. Brickman M. J., Balber A. E. Trypanosoma brucei rhodesiense bloodstream forms: surface ricin-binding glycoproteins are localized exclusively in the flagellar pocket and the flagellar adhesion zone. J Protozool. 1990 May-Jun;37(3):219–224. doi: 10.1111/j.1550-7408.1990.tb01131.x. [DOI] [PubMed] [Google Scholar]
  20. Brickman M. J., Balber A. E. Trypanosoma brucei rhodesiense: membrane glycoproteins localized primarily in endosomes and lysosomes of bloodstream forms. Exp Parasitol. 1993 Jun;76(4):329–344. doi: 10.1006/expr.1993.1041. [DOI] [PubMed] [Google Scholar]
  21. Bringaud F., Baltz T. Differential regulation of two distinct families of glucose transporter genes in Trypanosoma brucei. Mol Cell Biol. 1993 Feb;13(2):1146–1154. doi: 10.1128/mcb.13.2.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Brooker B. E. Desmosomes and hemidesmosomes in the flagellate Crithidia fasciculata. Z Zellforsch Mikrosk Anat. 1970;105(2):155–166. doi: 10.1007/BF00335467. [DOI] [PubMed] [Google Scholar]
  23. Brooker B. E. The fine structure of Crithidia fasciculata with special reference to the organelles involved in the ingestion and digestion of protein. Z Zellforsch Mikrosk Anat. 1971;116(4):532–563. doi: 10.1007/BF00335057. [DOI] [PubMed] [Google Scholar]
  24. Burleigh B. A., Wells C. W., Clarke M. W., Gardiner P. R. An integral membrane glycoprotein associated with an endocytic compartment of Trypanosoma vivax: identification and partial characterization. J Cell Biol. 1993 Jan;120(2):339–352. doi: 10.1083/jcb.120.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Bölow R., Griffiths G., Webster P., Stierhof Y. D., Opperdoes F. R., Overath P. Intracellular localization of the glycosyl-phosphatidylinositol-specific phospholipase C of Trypanosoma brucei. J Cell Sci. 1989 Jun;93(Pt 2):233–240. doi: 10.1242/jcs.93.2.233. [DOI] [PubMed] [Google Scholar]
  26. Bülow R., Nonnengässer C., Overath P. Release of the variant surface glycoprotein during differentiation of bloodstream to procyclic forms of Trypanosoma brucei. Mol Biochem Parasitol. 1989 Jan 1;32(1):85–92. doi: 10.1016/0166-6851(89)90132-1. [DOI] [PubMed] [Google Scholar]
  27. Campbell T. A., Zlotnick G. W., Neubert T. A., Sacci J. B., Jr, Gottlieb M. Purification and characterization of the 3'-nucleotidase/nuclease from promastigotes of Leishmania donovani. Mol Biochem Parasitol. 1991 Jul;47(1):109–117. doi: 10.1016/0166-6851(91)90153-w. [DOI] [PubMed] [Google Scholar]
  28. Campetella O., Sánchez D., Cazzulo J. J., Frasch A. C. A superfamily of Trypanosoma cruzi surface antigens. Parasitol Today. 1992 Nov;8(11):378–381. doi: 10.1016/0169-4758(92)90175-2. [DOI] [PubMed] [Google Scholar]
  29. Carter N. S., Fairlamb A. H. Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature. 1993 Jan 14;361(6408):173–176. doi: 10.1038/361173a0. [DOI] [PubMed] [Google Scholar]
  30. Cazzulo J. J., Hellman U., Couso R., Parodi A. J. Amino acid and carbohydrate composition of a lysosomal cysteine proteinase from Trypanosoma cruzi. Absence of phosphorylated mannose residues. Mol Biochem Parasitol. 1990 Jan 1;38(1):41–48. doi: 10.1016/0166-6851(90)90203-x. [DOI] [PubMed] [Google Scholar]
  31. Chaudhri M., Steverding D., Kittelberger D., Tjia S., Overath P. Expression of a glycosylphosphatidylinositol-anchored Trypanosoma brucei transferrin-binding protein complex in insect cells. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6443–6447. doi: 10.1073/pnas.91.14.6443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Clayton C. E. Import of fructose bisphosphate aldolase into the glycosomes of Trypanosoma brucei. J Cell Biol. 1987 Dec;105(6 Pt 1):2649–2654. doi: 10.1083/jcb.105.6.2649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Cooper D. N., Barondes S. H. Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J Cell Biol. 1990 May;110(5):1681–1691. doi: 10.1083/jcb.110.5.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Cooper R., de Jesus A. R., Cross G. A. Deletion of an immunodominant Trypanosoma cruzi surface glycoprotein disrupts flagellum-cell adhesion. J Cell Biol. 1993 Jul;122(1):149–156. doi: 10.1083/jcb.122.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Coppens I., Bastin P., Courtoy P. J., Baudhuin P., Opperdoes F. R. A rapid method purifies a glycoprotein of Mr 145,000 as the LDL receptor of Trypanosoma brucei brucei. Biochem Biophys Res Commun. 1991 Jul 15;178(1):185–191. doi: 10.1016/0006-291x(91)91797-g. [DOI] [PubMed] [Google Scholar]
  36. Coppens I., Bastin P., Opperdoes F. R., Baudhuin P., Courtoy P. J. Trypanosoma brucei brucei: antigenic stability of its LDL receptor and immunological cross-reactivity with the LDL receptor of the mammalian host. Exp Parasitol. 1992 Feb;74(1):77–86. doi: 10.1016/0014-4894(92)90141-v. [DOI] [PubMed] [Google Scholar]
  37. Coppens I., Baudhuin P., Opperdoes F. R., Courtoy P. J. Receptors for the host low density lipoproteins on the hemoflagellate Trypanosoma brucei: purification and involvement in the growth of the parasite. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6753–6757. doi: 10.1073/pnas.85.18.6753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Coppens I., Baudhuin P., Opperdoes F. R., Courtoy P. J. Role of acidic compartments in Trypanosoma brucei, with special reference to low-density lipoprotein processing. Mol Biochem Parasitol. 1993 Apr;58(2):223–232. doi: 10.1016/0166-6851(93)90044-x. [DOI] [PubMed] [Google Scholar]
  39. Coppens I., Opperdoes F. R., Courtoy P. J., Baudhuin P. Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. J Protozool. 1987 Nov;34(4):465–473. doi: 10.1111/j.1550-7408.1987.tb03216.x. [DOI] [PubMed] [Google Scholar]
  40. Cross G. A. Cellular and genetic aspects of antigenic variation in trypanosomes. Annu Rev Immunol. 1990;8:83–110. doi: 10.1146/annurev.iy.08.040190.000503. [DOI] [PubMed] [Google Scholar]
  41. Cross G. A., Takle G. B. The surface trans-sialidase family of Trypanosoma cruzi. Annu Rev Microbiol. 1993;47:385–411. doi: 10.1146/annurev.mi.47.100193.002125. [DOI] [PubMed] [Google Scholar]
  42. Denecke J., De Rycke R., Botterman J. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J. 1992 Jun;11(6):2345–2355. doi: 10.1002/j.1460-2075.1992.tb05294.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Dieckmann-Schuppert A., Bause E., Schwarz R. T. Glycosylation reactions in Plasmodium falciparum, Toxoplasma gondii, and Trypanosoma brucei brucei probed by the use of synthetic peptides. Biochim Biophys Acta. 1994 Jan 5;1199(1):37–44. doi: 10.1016/0304-4165(94)90093-0. [DOI] [PubMed] [Google Scholar]
  44. Dixon H., Ginger C. D., Williamson J. The lipid metabolism of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense. Comp Biochem Physiol B. 1971 Jun 15;39(2):247–266. doi: 10.1016/0305-0491(71)90168-4. [DOI] [PubMed] [Google Scholar]
  45. Docampo R., Vercesi A. E. Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ. J Biol Chem. 1989 Jan 5;264(1):108–111. [PubMed] [Google Scholar]
  46. Dovey H. F., Parsons M., Wang C. C. Biogenesis of glycosomes of Trypanosoma brucei: an in vitro model of 3-phosphoglycerate kinase import. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2598–2602. doi: 10.1073/pnas.85.8.2598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Duboise S. M., Vannier-Santos M. A., Costa-Pinto D., Rivas L., Pan A. A., Traub-Cseko Y., De Souza W., McMahon-Pratt D. The biosynthesis, processing, and immunolocalization of Leishmania pifanoi amastigote cysteine proteinases. Mol Biochem Parasitol. 1994 Nov;68(1):119–132. doi: 10.1016/0166-6851(94)00157-x. [DOI] [PubMed] [Google Scholar]
  48. Duszenko M., Ivanov I. E., Ferguson M. A., Plesken H., Cross G. A. Intracellular transport of a variant surface glycoprotein in Trypanosoma brucei. J Cell Biol. 1988 Jan;106(1):77–86. doi: 10.1083/jcb.106.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Eakin A. E., Mills A. A., Harth G., McKerrow J. H., Craik C. S. The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J Biol Chem. 1992 Apr 15;267(11):7411–7420. [PubMed] [Google Scholar]
  50. Effron P. N., Torri A. F., Engman D. M., Donelson J. E., Englund P. T. A mitochondrial heat shock protein from Crithidia fasciculata. Mol Biochem Parasitol. 1993 Jun;59(2):191–200. doi: 10.1016/0166-6851(93)90217-l. [DOI] [PubMed] [Google Scholar]
  51. Eilers M., Schatz G. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature. 1986 Jul 17;322(6076):228–232. doi: 10.1038/322228a0. [DOI] [PubMed] [Google Scholar]
  52. Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
  53. Engman D. M., Fehr S. C., Donelson J. E. Specific functional domains of mitochondrial hsp70s suggested by sequence comparison of the trypanosome and yeast proteins. Mol Biochem Parasitol. 1992 Mar;51(1):153–155. doi: 10.1016/0166-6851(92)90210-b. [DOI] [PubMed] [Google Scholar]
  54. Engman D. M., Kirchhoff L. V., Donelson J. E. Molecular cloning of mtp70, a mitochondrial member of the hsp70 family. Mol Cell Biol. 1989 Nov;9(11):5163–5168. doi: 10.1128/mcb.9.11.5163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Engstler M., Reuter G., Schauer R. The developmentally regulated trans-sialidase from Trypanosoma brucei sialylates the procyclic acidic repetitive protein. Mol Biochem Parasitol. 1993 Sep;61(1):1–13. doi: 10.1016/0166-6851(93)90153-o. [DOI] [PubMed] [Google Scholar]
  56. Feiguin F., Ferreira A., Kosik K. S., Caceres A. Kinesin-mediated organelle translocation revealed by specific cellular manipulations. J Cell Biol. 1994 Nov;127(4):1021–1039. doi: 10.1083/jcb.127.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Ferguson M. A., Duszenko M., Lamont G. S., Overath P., Cross G. A. Biosynthesis of Trypanosoma brucei variant surface glycoproteins. N-glycosylation and addition of a phosphatidylinositol membrane anchor. J Biol Chem. 1986 Jan 5;261(1):356–362. [PubMed] [Google Scholar]
  58. Fernandes A. P., Nelson K., Beverley S. M. Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11608–11612. doi: 10.1073/pnas.90.24.11608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Fiedler K., Parton R. G., Kellner R., Etzold T., Simons K. VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. EMBO J. 1994 Apr 1;13(7):1729–1740. doi: 10.1002/j.1460-2075.1994.tb06437.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Flinn H. M., Rangarajan D., Smith D. F. Expression of a hydrophilic surface protein in infective stages of Leishmania major. Mol Biochem Parasitol. 1994 Jun;65(2):259–270. doi: 10.1016/0166-6851(94)90077-9. [DOI] [PubMed] [Google Scholar]
  61. Fujiki M., Verner K. Coupling of cytosolic protein synthesis and mitochondrial protein import in yeast. Evidence for cotranslational import in vivo. J Biol Chem. 1993 Jan 25;268(3):1914–1920. [PubMed] [Google Scholar]
  62. Fung K., Clayton C. Recognition of a peroxisomal tripeptide entry signal by the glycosomes of Trypanosoma brucei. Mol Biochem Parasitol. 1991 Apr;45(2):261–264. doi: 10.1016/0166-6851(91)90093-l. [DOI] [PubMed] [Google Scholar]
  63. Giambiagi-de Marval M., Gottesdiener K., Rondinelli E., Van der Ploeg L. H. Predicted amino acid sequence and genomic organization of Trypanosoma cruzi hsp 60 genes. Mol Biochem Parasitol. 1993 Mar;58(1):25–31. doi: 10.1016/0166-6851(93)90087-e. [DOI] [PubMed] [Google Scholar]
  64. Gillett M. P., Owen J. S. Characteristics of the binding of human and bovine high-density lipoproteins by bloodstream forms of the African trypanosome, Trypanosoma brucei brucei. Biochim Biophys Acta. 1992 Feb 12;1123(3):239–248. doi: 10.1016/0005-2760(92)90002-d. [DOI] [PubMed] [Google Scholar]
  65. Glass D. J., Polvere R. I., Van der Ploeg L. H. Conserved sequences and transcription of the hsp70 gene family in Trypanosoma brucei. Mol Cell Biol. 1986 Dec;6(12):4657–4666. doi: 10.1128/mcb.6.12.4657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Glick B. S., Beasley E. M., Schatz G. Protein sorting in mitochondria. Trends Biochem Sci. 1992 Nov;17(11):453–459. doi: 10.1016/0968-0004(92)90487-t. [DOI] [PubMed] [Google Scholar]
  67. Glick B., Schatz G. Import of proteins into mitochondria. Annu Rev Genet. 1991;25:21–44. doi: 10.1146/annurev.ge.25.120191.000321. [DOI] [PubMed] [Google Scholar]
  68. Glover J. R., Andrews D. W., Subramani S., Rachubinski R. A. Mutagenesis of the amino targeting signal of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxisomes in vivo. J Biol Chem. 1994 Mar 11;269(10):7558–7563. [PubMed] [Google Scholar]
  69. Golgher D. B., Colli W., Souto-Padrón T., Zingales B. Galactofuranose-containing glycoconjugates of epimastigote and trypomastigote forms of Trypanosoma cruzi. Mol Biochem Parasitol. 1993 Aug;60(2):249–264. doi: 10.1016/0166-6851(93)90136-l. [DOI] [PubMed] [Google Scholar]
  70. González A., Rosales J. L., Ley V., Díaz C. Cloning and characterization of a gene coding for a protein (KAP) associated with the kinetoplast of epimastigotes and amastigotes of Trypanosoma cruzi. Mol Biochem Parasitol. 1990 May;40(2):233–243. doi: 10.1016/0166-6851(90)90045-n. [DOI] [PubMed] [Google Scholar]
  71. Gould S. G., Keller G. A., Subramani S. Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol. 1987 Dec;105(6 Pt 2):2923–2931. doi: 10.1083/jcb.105.6.2923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Grab D. J., Ito S., Kara U. A., Rovis L. Glycosyltransferase activities in Golgi complex and endoplasmic reticulum fractions isolated from African trypanosomes. J Cell Biol. 1984 Aug;99(2):569–577. doi: 10.1083/jcb.99.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Grab D. J., Shaw M. K., Wells C. W., Verjee Y., Russo D. C., Webster P., Naessens J., Fish W. R. The transferrin receptor in African trypanosomes: identification, partial characterization and subcellular localization. Eur J Cell Biol. 1993 Oct;62(1):114–126. [PubMed] [Google Scholar]
  74. Grab D. J., Webster P., Ito S., Fish W. R., Verjee Y., Lonsdale-Eccles J. D. Subcellular localization of a variable surface glycoprotein phosphatidylinositol-specific phospholipase-C in African trypanosomes. J Cell Biol. 1987 Aug;105(2):737–746. doi: 10.1083/jcb.105.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Grab D. J., Wells C. W., Shaw M. K., Webster P., Russo D. C. Endocytosed transferrin in African trypanosomes is delivered to lysosomes and may not be recycled. Eur J Cell Biol. 1992 Dec;59(2):398–404. [PubMed] [Google Scholar]
  76. Graham S. V., Barry J. D. Expression site-associated genes transcribed independently of variant surface glycoprotein genes in Trypanosoma brucei. Mol Biochem Parasitol. 1991 Jul;47(1):31–41. doi: 10.1016/0166-6851(91)90145-v. [DOI] [PubMed] [Google Scholar]
  77. Hager K. M., Pierce M. A., Moore D. R., Tytler E. M., Esko J. D., Hajduk S. L. Endocytosis of a cytotoxic human high density lipoprotein results in disruption of acidic intracellular vesicles and subsequent killing of African trypanosomes. J Cell Biol. 1994 Jul;126(1):155–167. doi: 10.1083/jcb.126.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Hannaert V., Blaauw M., Kohl L., Allert S., Opperdoes F. R., Michels P. A. Molecular analysis of the cytosolic and glycosomal glyceraldehyde-3-phosphate dehydrogenase in Leishmania mexicana. Mol Biochem Parasitol. 1992 Oct;55(1-2):115–126. doi: 10.1016/0166-6851(92)90132-4. [DOI] [PubMed] [Google Scholar]
  79. Hannavy K., Rospert S., Schatz G. Protein import into mitochondria: a paradigm for the translocation of polypeptides across membranes. Curr Opin Cell Biol. 1993 Aug;5(4):694–700. doi: 10.1016/0955-0674(93)90142-d. [DOI] [PubMed] [Google Scholar]
  80. Harris M. E., Moore D. R., Hajduk S. L. Addition of uridines to edited RNAs in trypanosome mitochondria occurs independently of transcription. J Biol Chem. 1990 Jul 5;265(19):11368–11376. [PubMed] [Google Scholar]
  81. Hart D. T., Baudhuin P., Opperdoes F. R., de Duve C. Biogenesis of the glycosome in Trypanosoma brucei: the synthesis, translocation and turnover of glycosomal polypeptides. EMBO J. 1987 May;6(5):1403–1411. doi: 10.1002/j.1460-2075.1987.tb02381.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Hasilik A. The early and late processing of lysosomal enzymes: proteolysis and compartmentation. Experientia. 1992 Feb 15;48(2):130–151. doi: 10.1007/BF01923507. [DOI] [PubMed] [Google Scholar]
  83. Herrera E. M., Ming M., Ortega-Barria E., Pereira M. E. Mediation of Trypanosoma cruzi invasion by heparan sulfate receptors on host cells and penetrin counter-receptors on the trypanosomes. Mol Biochem Parasitol. 1994 May;65(1):73–83. doi: 10.1016/0166-6851(94)90116-3. [DOI] [PubMed] [Google Scholar]
  84. Hide G., Gray A., Harrison C. M., Tait A. Identification of an epidermal growth factor receptor homologue in trypanosomes. Mol Biochem Parasitol. 1989 Aug;36(1):51–59. doi: 10.1016/0166-6851(89)90199-0. [DOI] [PubMed] [Google Scholar]
  85. Horazdovsky B. F., Busch G. R., Emr S. D. VPS21 encodes a rab5-like GTP binding protein that is required for the sorting of yeast vacuolar proteins. EMBO J. 1994 Mar 15;13(6):1297–1309. doi: 10.1002/j.1460-2075.1994.tb06382.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Hsu M. P., Muhich M. L., Boothroyd J. C. A developmentally regulated gene of trypanosomes encodes a homologue of rat protein-disulfide isomerase and phosphoinositol-phospholipase C. Biochemistry. 1989 Jul 25;28(15):6440–6446. doi: 10.1021/bi00441a042. [DOI] [PubMed] [Google Scholar]
  87. Ilg T., Fuchs M., Gnau V., Wolfram M., Harbecke D., Overath P. Distribution of parasite cysteine proteinases in lesions of mice infected with Leishmania mexicana amastigotes. Mol Biochem Parasitol. 1994 Oct;67(2):193–203. doi: 10.1016/0166-6851(94)00126-x. [DOI] [PubMed] [Google Scholar]
  88. Imanaka T., Small G. M., Lazarow P. B. Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J Cell Biol. 1987 Dec;105(6 Pt 2):2915–2922. doi: 10.1083/jcb.105.6.2915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Inverso J. A., Medina-Acosta E., O'Connor J., Russell D. G., Cross G. A. Crithidia fasciculata contains a transcribed leishmanial surface proteinase (gp63) gene homologue. Mol Biochem Parasitol. 1993 Jan;57(1):47–54. doi: 10.1016/0166-6851(93)90242-p. [DOI] [PubMed] [Google Scholar]
  90. Jackson D. G., Windle H. J., Voorheis H. P. The identification, purification, and characterization of two invariant surface glycoproteins located beneath the surface coat barrier of bloodstream forms of Trypanosoma brucei. J Biol Chem. 1993 Apr 15;268(11):8085–8095. [PubMed] [Google Scholar]
  91. Keller G. A., Krisans S., Gould S. J., Sommer J. M., Wang C. C., Schliebs W., Kunau W., Brody S., Subramani S. Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes, and glycosomes. J Cell Biol. 1991 Sep;114(5):893–904. doi: 10.1083/jcb.114.5.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Kendall G., Wilderspin A. F., Ashall F., Miles M. A., Kelly J. M. Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase does not conform to the 'hotspot' topogenic signal model. EMBO J. 1990 Sep;9(9):2751–2758. doi: 10.1002/j.1460-2075.1990.tb07462.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Kiebler M., Becker K., Pfanner N., Neupert W. Mitochondrial protein import: specific recognition and membrane translocation of preproteins. J Membr Biol. 1993 Sep;135(3):191–207. doi: 10.1007/BF00211091. [DOI] [PubMed] [Google Scholar]
  94. Kohl L., Callens M., Wierenga R. K., Opperdoes F. R., Michels P. A. Triose-phosphate isomerase of Leishmania mexicana mexicana. Cloning and characterization of the gene, overexpression in Escherichia coli and analysis of the protein. Eur J Biochem. 1994 Mar 1;220(2):331–338. doi: 10.1111/j.1432-1033.1994.tb18629.x. [DOI] [PubMed] [Google Scholar]
  95. Kragler F., Langeder A., Raupachova J., Binder M., Hartig A. Two independent peroxisomal targeting signals in catalase A of Saccharomyces cerevisiae. J Cell Biol. 1993 Feb;120(3):665–673. doi: 10.1083/jcb.120.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Kunau W. H., Beyer A., Franken T., Götte K., Marzioch M., Saidowsky J., Skaletz-Rorowski A., Wiebel F. F. Two complementary approaches to study peroxisome biogenesis in Saccharomyces cerevisiae: forward and reversed genetics. Biochimie. 1993;75(3-4):209–224. doi: 10.1016/0300-9084(93)90079-8. [DOI] [PubMed] [Google Scholar]
  97. Langford C. K., Ewbank S. A., Hanson S. S., Ullman B., Landfear S. M. Molecular characterization of two genes encoding members of the glucose transporter superfamily in the parasitic protozoan Leishmania donovani. Mol Biochem Parasitol. 1992 Oct;55(1-2):51–64. doi: 10.1016/0166-6851(92)90126-5. [DOI] [PubMed] [Google Scholar]
  98. Langreth S. G., Balber A. E. Protein uptake and digestion in bloodstream and culture forms of Trypanosoma brucei. J Protozool. 1975 Feb;22(1):40–53. doi: 10.1111/j.1550-7408.1975.tb00943.x. [DOI] [PubMed] [Google Scholar]
  99. Lee M. G., Atkinson B. L., Giannini S. H., Van der Ploeg L. H. Structure and expression of the hsp 70 gene family of Leishmania major. Nucleic Acids Res. 1988 Oct 25;16(20):9567–9585. doi: 10.1093/nar/16.20.9567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Lee M. G., Bihain B. E., Russell D. G., Deckelbaum R. J., Van der Ploeg L. H. Characterization of a cDNA encoding a cysteine-rich cell surface protein located in the flagellar pocket of the protozoan Trypanosoma brucei. Mol Cell Biol. 1990 Sep;10(9):4506–4517. doi: 10.1128/mcb.10.9.4506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Lee M. G., Russell D. G., D'Alesandro P. A., Van der Ploeg L. H. Identification of membrane-associated proteins in Trypanosoma brucei encoding an internal, EARLRAEE amino acid repeat. J Biol Chem. 1994 Mar 18;269(11):8408–8415. [PubMed] [Google Scholar]
  102. Leipe D. D., Gunderson J. H., Nerad T. A., Sogin M. L. Small subunit ribosomal RNA+ of Hexamita inflata and the quest for the first branch in the eukaryotic tree. Mol Biochem Parasitol. 1993 May;59(1):41–48. doi: 10.1016/0166-6851(93)90005-i. [DOI] [PubMed] [Google Scholar]
  103. Ley V., Robbins E. S., Nussenzweig V., Andrews N. W. The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of acidic compartments. J Exp Med. 1990 Feb 1;171(2):401–413. doi: 10.1084/jem.171.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Ligtenberg M. J., Bitter W., Kieft R., Steverding D., Janssen H., Calafat J., Borst P. Reconstitution of a surface transferrin binding complex in insect form Trypanosoma brucei. EMBO J. 1994 Jun 1;13(11):2565–2573. doi: 10.1002/j.1460-2075.1994.tb06546.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Lonsdale-Eccles J. D., Grab D. J. Lysosomal and non-lysosomal peptidyl hydrolases of the bloodstream forms of Trypanosoma brucei brucei. Eur J Biochem. 1987 Dec 15;169(3):467–475. doi: 10.1111/j.1432-1033.1987.tb13634.x. [DOI] [PubMed] [Google Scholar]
  106. Lonsdale-Eccles J. D., Mpimbaza G. W. Thiol-dependent proteases of African trypanosomes. Analysis by electrophoresis in sodium dodecyl sulphate/polyacrylamide gels co-polymerized with fibrinogen. Eur J Biochem. 1986 Mar 17;155(3):469–473. doi: 10.1111/j.1432-1033.1986.tb09513.x. [DOI] [PubMed] [Google Scholar]
  107. Lorenz P., Barth P. E., Rudin W., Betschart B. Importance of acidic intracellular compartments in the lysis of Trypanosoma brucei brucei by normal human serum. Trans R Soc Trop Med Hyg. 1994 Jul-Aug;88(4):487–488. doi: 10.1016/0035-9203(94)90443-x. [DOI] [PubMed] [Google Scholar]
  108. Marchand M., Kooystra U., Wierenga R. K., Lambeir A. M., Van Beeumen J., Opperdoes F. R., Michels P. A. Glucosephosphate isomerase from Trypanosoma brucei. Cloning and characterization of the gene and analysis of the enzyme. Eur J Biochem. 1989 Sep 15;184(2):455–464. doi: 10.1111/j.1432-1033.1989.tb15038.x. [DOI] [PubMed] [Google Scholar]
  109. Marcusson E. G., Horazdovsky B. F., Cereghino J. L., Gharakhanian E., Emr S. D. The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell. 1994 May 20;77(4):579–586. doi: 10.1016/0092-8674(94)90219-4. [DOI] [PubMed] [Google Scholar]
  110. Martin F., Requena J. M., Martin J., Alonso C., López M. C. Cytoplasmic-nuclear translocation of the Hsp70 protein during environmental stress in Trypanosoma cruzi. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1155–1162. doi: 10.1006/bbrc.1993.2372. [DOI] [PubMed] [Google Scholar]
  111. Marzioch M., Erdmann R., Veenhuis M., Kunau W. H. PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J. 1994 Oct 17;13(20):4908–4918. doi: 10.1002/j.1460-2075.1994.tb06818.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Matteoni R., Kreis T. E. Translocation and clustering of endosomes and lysosomes depends on microtubules. J Cell Biol. 1987 Sep;105(3):1253–1265. doi: 10.1083/jcb.105.3.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Mazumder S., Mukherjee T., Ghosh J., Ray M., Bhaduri A. Allosteric modulation of Leishmania donovani plasma membrane Ca(2+)-ATPase by endogenous calmodulin. J Biol Chem. 1992 Sep 15;267(26):18440–18446. [PubMed] [Google Scholar]
  114. Mbawa Z. R., Webster P., Lonsdale-Eccles J. D. Immunolocalization of a cysteine protease within the lysosomal system of Trypanosoma congolense. Eur J Cell Biol. 1991 Dec;56(2):243–250. [PubMed] [Google Scholar]
  115. McCollum D., Monosov E., Subramani S. The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells--the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J Cell Biol. 1993 May;121(4):761–774. doi: 10.1083/jcb.121.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Medina-Acosta E., Karess R. E., Russell D. G. Structurally distinct genes for the surface protease of Leishmania mexicana are developmentally regulated. Mol Biochem Parasitol. 1993 Jan;57(1):31–45. doi: 10.1016/0166-6851(93)90241-o. [DOI] [PubMed] [Google Scholar]
  118. Medina-Acosta E., Karess R. E., Schwartz H., Russell D. G. The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Mol Biochem Parasitol. 1989 Dec;37(2):263–273. doi: 10.1016/0166-6851(89)90158-8. [DOI] [PubMed] [Google Scholar]
  119. Medina-Acosta E., Paul S., Tomlinson S., Pontes-de-Carvalho L. C. Combined occurrence of trypanosomal sialidase/trans-sialidase activities and leishmanial metalloproteinase gene homologues in Endotrypanum sp. Mol Biochem Parasitol. 1994 Apr;64(2):273–282. doi: 10.1016/0166-6851(94)00029-8. [DOI] [PubMed] [Google Scholar]
  120. Melendy T., Sheline C., Ray D. S. Localization of a type II DNA topoisomerase to two sites at the periphery of the kinetoplast DNA of Crithidia fasciculata. Cell. 1988 Dec 23;55(6):1083–1088. doi: 10.1016/0092-8674(88)90252-8. [DOI] [PubMed] [Google Scholar]
  121. Mensa-Wilmot K., LeBowitz J. H., Chang K. P., al-Qahtani A., McGwire B. S., Tucker S., Morris J. C. A glycosylphosphatidylinositol (GPI)-negative phenotype produced in Leishmania major by GPI phospholipase C from Trypanosoma brucei: topography of two GPI pathways. J Cell Biol. 1994 Mar;124(6):935–947. doi: 10.1083/jcb.124.6.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Michels P. A., Poliszczak A., Osinga K. A., Misset O., Van Beeumen J., Wierenga R. K., Borst P., Opperdoes F. R. Two tandemly linked identical genes code for the glycosomal glyceraldehyde-phosphate dehydrogenase in Trypanosoma brucei. EMBO J. 1986 May;5(5):1049–1056. doi: 10.1002/j.1460-2075.1986.tb04321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Milder R., Deane M. P. The cytostome of Trypanosoma cruzi and T. conorhini. J Protozool. 1969 Nov;16(4):730–737. doi: 10.1111/j.1550-7408.1969.tb02335.x. [DOI] [PubMed] [Google Scholar]
  124. Misset O., Bos O. J., Opperdoes F. R. Glycolytic enzymes of Trypanosoma brucei. Simultaneous purification, intraglycosomal concentrations and physical properties. Eur J Biochem. 1986 Jun 2;157(2):441–453. doi: 10.1111/j.1432-1033.1986.tb09687.x. [DOI] [PubMed] [Google Scholar]
  125. Mottram J. C., North M. J., Barry J. D., Coombs G. H. A cysteine proteinase cDNA from Trypanosoma brucei predicts an enzyme with an unusual C-terminal extension. FEBS Lett. 1989 Dec 4;258(2):211–215. doi: 10.1016/0014-5793(89)81655-2. [DOI] [PubMed] [Google Scholar]
  126. Mowatt M. R., Clayton C. E. Polymorphism in the procyclic acidic repetitive protein gene family of Trypanosoma brucei. Mol Cell Biol. 1988 Oct;8(10):4055–4062. doi: 10.1128/mcb.8.10.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Munoz-Antonia T., Richards F. F., Ullu E. Differences in glucose transport between blood stream and procyclic forms of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol. 1991 Jul;47(1):73–81. doi: 10.1016/0166-6851(91)90149-z. [DOI] [PubMed] [Google Scholar]
  128. Neubert T. A., Gottlieb M. An inducible 3'-nucleotidase/nuclease from the trypanosomatid Crithidia luciliae. Purification and characterization. J Biol Chem. 1990 May 5;265(13):7236–7242. [PubMed] [Google Scholar]
  129. Nolan D. P., Voorheis H. P. The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase. Eur J Biochem. 1992 Oct 1;209(1):207–216. doi: 10.1111/j.1432-1033.1992.tb17278.x. [DOI] [PubMed] [Google Scholar]
  130. Nozaki T., Cross G. A. Functional complementation of glycoprotein 72 in a Trypanosoma cruzi glycoprotein 72 null mutant. Mol Biochem Parasitol. 1994 Sep;67(1):91–102. doi: 10.1016/0166-6851(94)90099-x. [DOI] [PubMed] [Google Scholar]
  131. Nyame K., Do-Thi C. D., Opperdoes F. R., Michels P. A. Subcellular distribution and characterization of glucosephosphate isomerase in Leishmania mexicana mexicana. Mol Biochem Parasitol. 1994 Oct;67(2):269–279. doi: 10.1016/0166-6851(94)00139-1. [DOI] [PubMed] [Google Scholar]
  132. Olson C. L., Nadeau K. C., Sullivan M. A., Winquist A. G., Donelson J. E., Walsh C. T., Engman D. M. Molecular and biochemical comparison of the 70-kDa heat shock proteins of Trypanosoma cruzi. J Biol Chem. 1994 Feb 4;269(5):3868–3874. [PubMed] [Google Scholar]
  133. Opperdoes F. R., Baudhuin P., Coppens I., De Roe C., Edwards S. W., Weijers P. J., Misset O. Purification, morphometric analysis, and characterization of the glycosomes (microbodies) of the protozoan hemoflagellate Trypanosoma brucei. J Cell Biol. 1984 Apr;98(4):1178–1184. doi: 10.1083/jcb.98.4.1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Opperdoes F. R., Borst P., Bakker S., Leene W. Localization of glycerol-3-phosphate oxidase in the mitochondrion and particulate NAD+-linked glycerol-3-phosphate dehydrogenase in the microbodies of the bloodstream form to Trypanosoma brucei. Eur J Biochem. 1977 Jun 1;76(1):29–39. doi: 10.1111/j.1432-1033.1977.tb11567.x. [DOI] [PubMed] [Google Scholar]
  135. Opperdoes F. R., Markoŝ A., Steiger R. F. Localization of malate dehydrogenase, adenylate kinase and glycolytic enzymes in glycosomes and the threonine pathway in the mitochondrion of cultured procyclic trypomastigotes of Trypanosoma brucei. Mol Biochem Parasitol. 1981 Dec 31;4(5-6):291–309. doi: 10.1016/0166-6851(81)90062-1. [DOI] [PubMed] [Google Scholar]
  136. Opperdoes F. R., Nohynkova E., Van Schaftingen E., Lambeir A. M., Veenhuis M., Van Roy J. Demonstration of glycosomes (microbodies) in the Bodonid flagellate Trypanoplasma borelli (Protozoa, Kinetoplastida). Mol Biochem Parasitol. 1988 Aug;30(2):155–163. doi: 10.1016/0166-6851(88)90108-9. [DOI] [PubMed] [Google Scholar]
  137. Ortega-Barria E., Pereira M. E. A novel T. cruzi heparin-binding protein promotes fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells. Cell. 1991 Oct 18;67(2):411–421. doi: 10.1016/0092-8674(91)90192-2. [DOI] [PubMed] [Google Scholar]
  138. Osinga K. A., Swinkels B. W., Gibson W. C., Borst P., Veeneman G. H., Van Boom J. H., Michels P. A., Opperdoes F. R. Topogenesis of microbody enzymes: a sequence comparison of the genes for the glycosomal (microbody) and cytosolic phosphoglycerate kinases of Trypanosoma brucei. EMBO J. 1985 Dec 30;4(13B):3811–3817. doi: 10.1002/j.1460-2075.1985.tb04152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Paindavoine P., Rolin S., Van Assel S., Geuskens M., Jauniaux J. C., Dinsart C., Huet G., Pays E. A gene from the variant surface glycoprotein expression site encodes one of several transmembrane adenylate cyclases located on the flagellum of Trypanosoma brucei. Mol Cell Biol. 1992 Mar;12(3):1218–1225. doi: 10.1128/mcb.12.3.1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Palmieri F. Mitochondrial carrier proteins. FEBS Lett. 1994 Jun 6;346(1):48–54. doi: 10.1016/0014-5793(94)00329-7. [DOI] [PubMed] [Google Scholar]
  141. Pasion S. G., Hines J. C., Aebersold R., Ray D. S. Molecular cloning and expression of the gene encoding the kinetoplast-associated type II DNA topoisomerase of Crithidia fasciculata. Mol Biochem Parasitol. 1992 Jan;50(1):57–67. doi: 10.1016/0166-6851(92)90244-e. [DOI] [PubMed] [Google Scholar]
  142. Pays E., Tebabi P., Pays A., Coquelet H., Revelard P., Salmon D., Steinert M. The genes and transcripts of an antigen gene expression site from T. brucei. Cell. 1989 Jun 2;57(5):835–845. doi: 10.1016/0092-8674(89)90798-8. [DOI] [PubMed] [Google Scholar]
  143. Pays E., Vanhamme L., Berberof M. Genetic controls for the expression of surface antigens in African trypanosomes. Annu Rev Microbiol. 1994;48:25–52. doi: 10.1146/annurev.mi.48.100194.000325. [DOI] [PubMed] [Google Scholar]
  144. Peters C., von Figura K. Biogenesis of lysosomal membranes. FEBS Lett. 1994 Jun 6;346(1):108–114. doi: 10.1016/0014-5793(94)00499-4. [DOI] [PubMed] [Google Scholar]
  145. Peterson G. C., Souza A. E., Parsons M. Characterization of a Trypanosoma brucei nuclear gene encoding a protein homologous to a subunit of bovine NADH:ubiquinone oxidoreductase (complex I). Mol Biochem Parasitol. 1993 Mar;58(1):63–70. doi: 10.1016/0166-6851(93)90091-b. [DOI] [PubMed] [Google Scholar]
  146. Pimenta P. F., Pinto da Silva P., Rangarajan D., Smith D. F., Sacks D. L. Leishmania major: association of the differentially expressed gene B protein and the surface lipophosphoglycan as revealed by membrane capping. Exp Parasitol. 1994 Nov;79(3):468–479. doi: 10.1006/expr.1994.1108. [DOI] [PubMed] [Google Scholar]
  147. Piper R. C., Xu X., Russell D. G., Little B. M., Landfear S. M. Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain. J Cell Biol. 1995 Feb;128(4):499–508. doi: 10.1083/jcb.128.4.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Preston T. M. The form and function of the cytostome-cytopharynx of the culture forms of the elasmobranch haemoflagellate Trypanosoma raiae Laveran & Mesnil. J Protozool. 1969 May;16(2):320–333. doi: 10.1111/j.1550-7408.1969.tb02278.x. [DOI] [PubMed] [Google Scholar]
  149. Priest J. W., Hajduk S. L. Cytochrome c reductase purified from Crithidia fasciculata contains an atypical cytochrome c1. J Biol Chem. 1992 Oct 5;267(28):20188–20195. [PubMed] [Google Scholar]
  150. Priest J. W., Hajduk S. L. Developmental regulation of Trypanosoma brucei cytochrome c reductase during bloodstream to procyclic differentiation. Mol Biochem Parasitol. 1994 Jun;65(2):291–304. doi: 10.1016/0166-6851(94)90080-9. [DOI] [PubMed] [Google Scholar]
  151. Priest J. W., Wood Z. A., Hajduk S. L. Cytochromes c1 of kinetoplastid protozoa lack mitochondrial targeting presequences. Biochim Biophys Acta. 1993 Sep 13;1144(2):229–231. doi: 10.1016/0005-2728(93)90178-i. [DOI] [PubMed] [Google Scholar]
  152. Prioli R. P., Rosenberg I., Shivakumar S., Pereira M. E. Specific binding of human plasma high density lipoprotein (cruzin) to Trypanosoma cruzi. Mol Biochem Parasitol. 1988 Apr;28(3):257–263. doi: 10.1016/0166-6851(88)90010-2. [DOI] [PubMed] [Google Scholar]
  153. Ramamoorthy R., Donelson J. E., Paetz K. E., Maybodi M., Roberts S. C., Wilson M. E. Three distinct RNAs for the surface protease gp63 are differentially expressed during development of Leishmania donovani chagasi promastigotes to an infectious form. J Biol Chem. 1992 Jan 25;267(3):1888–1895. [PubMed] [Google Scholar]
  154. Ramirez M. I., Ruiz R. de C., Araya J. E., Da Silveira J. F., Yoshida N. Involvement of the stage-specific 82-kilodalton adhesion molecule of Trypanosoma cruzi metacyclic trypomastigotes in host cell invasion. Infect Immun. 1993 Sep;61(9):3636–3641. doi: 10.1128/iai.61.9.3636-3641.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Ranie J., Kumar V. P., Balaram H. Cloning of the triosephosphate isomerase gene of Plasmodium falciparum and expression in Escherichia coli. Mol Biochem Parasitol. 1993 Oct;61(2):159–169. doi: 10.1016/0166-6851(93)90062-3. [DOI] [PubMed] [Google Scholar]
  156. Roberts S. C., Swihart K. G., Agey M. W., Ramamoorthy R., Wilson M. E., Donelson J. E. Sequence diversity and organization of the msp gene family encoding gp63 of Leishmania chagasi. Mol Biochem Parasitol. 1993 Dec;62(2):157–171. doi: 10.1016/0166-6851(93)90106-8. [DOI] [PubMed] [Google Scholar]
  157. Robinson D. R., Gull K. Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle. Nature. 1991 Aug 22;352(6337):731–733. doi: 10.1038/352731a0. [DOI] [PubMed] [Google Scholar]
  158. Roditi I., Schwarz H., Pearson T. W., Beecroft R. P., Liu M. K., Richardson J. P., Bühring H. J., Pleiss J., Bülow R., Williams R. O. Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J Cell Biol. 1989 Feb;108(2):737–746. doi: 10.1083/jcb.108.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Roise D., Schatz G. Mitochondrial presequences. J Biol Chem. 1988 Apr 5;263(10):4509–4511. [PubMed] [Google Scholar]
  160. Rudenko G., Blundell P. A., Taylor M. C., Kieft R., Borst P. VSG gene expression site control in insect form Trypanosoma brucei. EMBO J. 1994 Nov 15;13(22):5470–5482. doi: 10.1002/j.1460-2075.1994.tb06882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Russell D. G., Xu S., Chakraborty P. Intracellular trafficking and the parasitophorous vacuole of Leishmania mexicana-infected macrophages. J Cell Sci. 1992 Dec;103(Pt 4):1193–1210. doi: 10.1242/jcs.103.4.1193. [DOI] [PubMed] [Google Scholar]
  162. Salmon D., Geuskens M., Hanocq F., Hanocq-Quertier J., Nolan D., Ruben L., Pays E. A novel heterodimeric transferrin receptor encoded by a pair of VSG expression site-associated genes in T. brucei. Cell. 1994 Jul 15;78(1):75–86. doi: 10.1016/0092-8674(94)90574-6. [DOI] [PubMed] [Google Scholar]
  163. Sanchez-Moreno M., Lasztity D., Coppens I., Opperdoes F. R. Characterization of carbohydrate metabolism and demonstration of glycosomes in a Phytomonas sp. isolated from Euphorbia characias. Mol Biochem Parasitol. 1992 Sep;54(2):185–199. doi: 10.1016/0166-6851(92)90111-v. [DOI] [PubMed] [Google Scholar]
  164. Schell D., Borowy N. K., Overath P. Transferrin is a growth factor for the bloodstream form of Trypanosoma brucei. Parasitol Res. 1991;77(7):558–560. doi: 10.1007/BF00931012. [DOI] [PubMed] [Google Scholar]
  165. Schell D., Evers R., Preis D., Ziegelbauer K., Kiefer H., Lottspeich F., Cornelissen A. W., Overath P. A transferrin-binding protein of Trypanosoma brucei is encoded by one of the genes in the variant surface glycoprotein gene expression site. EMBO J. 1991 May;10(5):1061–1066. doi: 10.1002/j.1460-2075.1991.tb08045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Schneider P., Rosat J. P., Ransijn A., Ferguson M. A., McConville M. J. Characterization of glycoinositol phospholipids in the amastigote stage of the protozoan parasite Leishmania major. Biochem J. 1993 Oct 15;295(Pt 2):555–564. doi: 10.1042/bj2950555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Searle S., McCrossan M. V., Smith D. F. Expression of a mitochondrial stress protein in the protozoan parasite Leishmania major. J Cell Sci. 1993 Apr;104(Pt 4):1091–1100. doi: 10.1242/jcs.104.4.1091. [DOI] [PubMed] [Google Scholar]
  168. Searle S., Smith D. F. Leishmania major: characterisation and expression of a cytoplasmic stress-related protein. Exp Parasitol. 1993 Aug;77(1):43–52. doi: 10.1006/expr.1993.1059. [DOI] [PubMed] [Google Scholar]
  169. Shapiro S. Z., Webster P. Coated vesicles from the protozoan parasite Trypanosoma brucei: purification and characterization. J Protozool. 1989 Jul-Aug;36(4):344–349. doi: 10.1111/j.1550-7408.1989.tb05524.x. [DOI] [PubMed] [Google Scholar]
  170. Sherwin T., Gull K. The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philos Trans R Soc Lond B Biol Sci. 1989 Jun 12;323(1218):573–588. doi: 10.1098/rstb.1989.0037. [DOI] [PubMed] [Google Scholar]
  171. Small G. M., Szabo L. J., Lazarow P. B. Acyl-CoA oxidase contains two targeting sequences each of which can mediate protein import into peroxisomes. EMBO J. 1988 Apr;7(4):1167–1173. doi: 10.1002/j.1460-2075.1988.tb02927.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Smith A. B., Esko J. D., Hajduk S. L. Killing of trypanosomes by the human haptoglobin-related protein. Science. 1995 Apr 14;268(5208):284–286. doi: 10.1126/science.7716520. [DOI] [PubMed] [Google Scholar]
  173. Soares M. J., Souto-Padrón T., De Souza W. Identification of a large pre-lysosomal compartment in the pathogenic protozoon Trypanosoma cruzi. J Cell Sci. 1992 May;102(Pt 1):157–167. doi: 10.1242/jcs.102.1.157. [DOI] [PubMed] [Google Scholar]
  174. Sommer J. M., Cheng Q. L., Keller G. A., Wang C. C. In vivo import of firefly luciferase into the glycosomes of Trypanosoma brucei and mutational analysis of the C-terminal targeting signal. Mol Biol Cell. 1992 Jul;3(7):749–759. doi: 10.1091/mbc.3.7.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Sommer J. M., Nguyen T. T., Wang C. C. Phosphoenolpyruvate carboxykinase of Trypanosoma brucei is targeted to the glycosomes by a C-terminal sequence. FEBS Lett. 1994 Aug 15;350(1):125–129. doi: 10.1016/0014-5793(94)00747-0. [DOI] [PubMed] [Google Scholar]
  176. Sommer J. M., Peterson G., Keller G. A., Parsons M., Wang C. C. The C-terminal tripeptide of glycosomal phosphoglycerate kinase is both necessary and sufficient for import into the glycosomes of Trypanosoma brucei. FEBS Lett. 1993 Jan 18;316(1):53–58. doi: 10.1016/0014-5793(93)81735-i. [DOI] [PubMed] [Google Scholar]
  177. Sommer J. M., Thissen J. A., Parsons M., Wang C. C. Characterization of an in vitro assay for import of 3-phosphoglycerate kinase into the glycosomes of Trypanosoma brucei. Mol Cell Biol. 1990 Sep;10(9):4545–4554. doi: 10.1128/mcb.10.9.4545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Sommer J. M., Wang C. C. Targeting proteins to the glycosomes of African trypanosomes. Annu Rev Microbiol. 1994;48:105–138. doi: 10.1146/annurev.mi.48.100194.000541. [DOI] [PubMed] [Google Scholar]
  179. Souto-Padrón T., Campetella O. E., Cazzulo J. J., de Souza W. Cysteine proteinase in Trypanosoma cruzi: immunocytochemical localization and involvement in parasite-host cell interaction. J Cell Sci. 1990 Jul;96(Pt 3):485–490. doi: 10.1242/jcs.96.3.485. [DOI] [PubMed] [Google Scholar]
  180. Souza A. E., Bates P. A., Coombs G. H., Mottram J. C. Null mutants for the lmcpa cysteine proteinase gene in Leishmania mexicana. Mol Biochem Parasitol. 1994 Feb;63(2):213–220. doi: 10.1016/0166-6851(94)90057-4. [DOI] [PubMed] [Google Scholar]
  181. Steiger R. F., Opperdoes F. R., Bontemps J. Subcellular fractionation of Trypanosoma brucei bloodstream forms with special reference to hydrolases. Eur J Biochem. 1980 Mar;105(1):163–175. doi: 10.1111/j.1432-1033.1980.tb04486.x. [DOI] [PubMed] [Google Scholar]
  182. Steverding D., Stierhof Y. D., Chaudhri M., Ligtenberg M., Schell D., Beck-Sickinger A. G., Overath P. ESAG 6 and 7 products of Trypanosoma brucei form a transferrin binding protein complex. Eur J Cell Biol. 1994 Jun;64(1):78–87. [PubMed] [Google Scholar]
  183. Stierhof Y. D., Ilg T., Russell D. G., Hohenberg H., Overath P. Characterization of polymer release from the flagellar pocket of Leishmania mexicana promastigotes. J Cell Biol. 1994 Apr;125(2):321–331. doi: 10.1083/jcb.125.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Strauss P. R., Wang J. C. The TOP2 gene of Trypanosoma brucei: a single-copy gene that shares extensive homology with other TOP2 genes encoding eukaryotic DNA topoisomerase II. Mol Biochem Parasitol. 1990 Jan 1;38(1):141–150. doi: 10.1016/0166-6851(90)90214-7. [DOI] [PubMed] [Google Scholar]
  185. Stuart K. RNA editing in mitochondrial mRNA of trypanosomatids. Trends Biochem Sci. 1991 Feb;16(2):68–72. doi: 10.1016/0968-0004(91)90027-s. [DOI] [PubMed] [Google Scholar]
  186. Stuart K. RNA editing in trypanosomatid mitochondria. Annu Rev Microbiol. 1991;45:327–344. doi: 10.1146/annurev.mi.45.100191.001551. [DOI] [PubMed] [Google Scholar]
  187. Stuart R. A., Cyr D. M., Craig E. A., Neupert W. Mitochondrial molecular chaperones: their role in protein translocation. Trends Biochem Sci. 1994 Feb;19(2):87–92. doi: 10.1016/0968-0004(94)90041-8. [DOI] [PubMed] [Google Scholar]
  188. Subramani S. Protein import into peroxisomes and biogenesis of the organelle. Annu Rev Cell Biol. 1993;9:445–478. doi: 10.1146/annurev.cb.09.110193.002305. [DOI] [PubMed] [Google Scholar]
  189. Swinkels B. W., Evers R., Borst P. The topogenic signal of the glycosomal (microbody) phosphoglycerate kinase of Crithidia fasciculata resides in a carboxy-terminal extension. EMBO J. 1988 Apr;7(4):1159–1165. doi: 10.1002/j.1460-2075.1988.tb02926.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Swinkels B. W., Gibson W. C., Osinga K. A., Kramer R., Veeneman G. H., van Boom J. H., Borst P. Characterization of the gene for the microbody (glycosomal) triosephosphate isomerase of Trypanosoma brucei. EMBO J. 1986 Jun;5(6):1291–1298. doi: 10.1002/j.1460-2075.1986.tb04358.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Swinkels B. W., Gould S. J., Bodnar A. G., Rachubinski R. A., Subramani S. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 1991 Nov;10(11):3255–3262. doi: 10.1002/j.1460-2075.1991.tb04889.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Swinkels B. W., Loiseau A., Opperdoes F. R., Borst P. A phosphoglycerate kinase-related gene conserved between Trypanosoma brucei and Crithidia fasciculata. Mol Biochem Parasitol. 1992 Jan;50(1):69–78. doi: 10.1016/0166-6851(92)90245-f. [DOI] [PubMed] [Google Scholar]
  193. Teixeira S. M., Russell D. G., Kirchhoff L. V., Donelson J. E. A differentially expressed gene family encoding "amastin," a surface protein of Trypanosoma cruzi amastigotes. J Biol Chem. 1994 Aug 12;269(32):20509–20516. [PubMed] [Google Scholar]
  194. Tetaud E., Bringaud F., Chabas S., Barrett M. P., Baltz T. Characterization of glucose transport and cloning of a hexose transporter gene in Trypanosoma cruzi. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8278–8282. doi: 10.1073/pnas.91.17.8278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Tibbetts R. S., Kim I. Y., Olson C. L., Barthel L. M., Sullivan M. A., Winquist A. G., Miller S. D., Engman D. M. Molecular cloning and characterization of the 78-kilodalton glucose-regulated protein of Trypanosoma cruzi. Infect Immun. 1994 Jun;62(6):2499–2507. doi: 10.1128/iai.62.6.2499-2507.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Tobin J. F., Wirth D. F. Mutational analysis of a signal sequence required for protein secretion in Leishmania major. Mol Biochem Parasitol. 1993 Dec;62(2):243–249. doi: 10.1016/0166-6851(93)90113-c. [DOI] [PubMed] [Google Scholar]
  197. Torri A. F., Bertrand K. I., Hajduk S. L. Protein stability regulates the expression of cytochrome c during the developmental cycle of Trypanosoma brucei. Mol Biochem Parasitol. 1993 Feb;57(2):305–315. doi: 10.1016/0166-6851(93)90206-d. [DOI] [PubMed] [Google Scholar]
  198. Torri A. F., Hajduk S. L. Posttranscriptional regulation of cytochrome c expression during the developmental cycle of Trypanosoma brucei. Mol Cell Biol. 1988 Nov;8(11):4625–4633. doi: 10.1128/mcb.8.11.4625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Van der Leij I., Franse M. M., Elgersma Y., Distel B., Tabak H. F. PAS10 is a tetratricopeptide-repeat protein that is essential for the import of most matrix proteins into peroxisomes of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11782–11786. doi: 10.1073/pnas.90.24.11782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Van der Ploeg L. H., Gottesdiener K., Lee M. G. Antigenic variation in African trypanosomes. Trends Genet. 1992 Dec;8(12):452–457. doi: 10.1016/0168-9525(92)90330-7. [DOI] [PubMed] [Google Scholar]
  201. Vandeweerd V., Black S. J. Selective inhibition of the uptake by bloodstream form Trypanosoma brucei brucei of serum lipoprotein-associated phospholipid and cholesteryl ester. Mol Biochem Parasitol. 1990 Jun;41(2):197–206. doi: 10.1016/0166-6851(90)90182-l. [DOI] [PubMed] [Google Scholar]
  202. Vandeweerd V., Black S. J. Serum lipoprotein and Trypanosoma brucei brucei interactions in vitro. Mol Biochem Parasitol. 1989 Dec;37(2):201–211. doi: 10.1016/0166-6851(89)90152-7. [DOI] [PubMed] [Google Scholar]
  203. Vidugiriene J., Menon A. K. The GPI anchor of cell-surface proteins is synthesized on the cytoplasmic face of the endoplasmic reticulum. J Cell Biol. 1994 Oct;127(2):333–341. doi: 10.1083/jcb.127.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Wachter C., Schatz G., Glick B. S. Role of ATP in the intramitochondrial sorting of cytochrome c1 and the adenine nucleotide translocator. EMBO J. 1992 Dec;11(13):4787–4794. doi: 10.1002/j.1460-2075.1992.tb05584.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Wallis A. E., Russell D. G., McMaster W. R. Leishmania major: organization and conservation of genes encoding repetitive peptides and subcellular localization of the corresponding proteins. Exp Parasitol. 1994 Mar;78(2):161–174. doi: 10.1006/expr.1994.1016. [DOI] [PubMed] [Google Scholar]
  206. Walton P. A., Wendland M., Subramani S., Rachubinski R. A., Welch W. J. Involvement of 70-kD heat-shock proteins in peroxisomal import. J Cell Biol. 1994 Jun;125(5):1037–1046. doi: 10.1083/jcb.125.5.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Waterham H. R., Titorenko V. I., Haima P., Cregg J. M., Harder W., Veenhuis M. The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy- and amino-terminal targeting signals. J Cell Biol. 1994 Nov;127(3):737–749. doi: 10.1083/jcb.127.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Webster P. Endocytosis by African trypanosomes. I. Three-dimensional structure of the endocytic organelles in Trypanosoma brucei and T. congolense. Eur J Cell Biol. 1989 Aug;49(2):295–302. [PubMed] [Google Scholar]
  209. Webster P., Fish W. R. Endocytosis by African trypanosomes. II. Occurrence in different life-cycle stages and intracellular sorting. Eur J Cell Biol. 1989 Aug;49(2):303–310. [PubMed] [Google Scholar]
  210. Webster P., Grab D. J. Intracellular colocalization of variant surface glycoprotein and transferrin-gold in Trypanosoma brucei. J Cell Biol. 1988 Feb;106(2):279–288. doi: 10.1083/jcb.106.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Webster P., Russell D. G. The flagellar pocket of trypanosomatids. Parasitol Today. 1993 Jun;9(6):201–206. doi: 10.1016/0169-4758(93)90008-4. [DOI] [PubMed] [Google Scholar]
  212. Webster P., Shapiro S. Z. Trypanosoma brucei: a membrane-associated protein in coated endocytotic vesicles. Exp Parasitol. 1990 Feb;70(2):154–163. doi: 10.1016/0014-4894(90)90096-u. [DOI] [PubMed] [Google Scholar]
  213. Wendland M., Subramani S. Cytosol-dependent peroxisomal protein import in a permeabilized cell system. J Cell Biol. 1993 Feb;120(3):675–685. doi: 10.1083/jcb.120.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Wienhues U., Neupert W. Protein translocation across mitochondrial membranes. Bioessays. 1992 Jan;14(1):17–23. doi: 10.1002/bies.950140105. [DOI] [PubMed] [Google Scholar]
  215. Wierenga R. K., Swinkels B., Michels P. A., Osinga K., Misset O., Van Beeumen J., Gibson W. C., Postma J. P., Borst P., Opperdoes F. R. Common elements on the surface of glycolytic enzymes from Trypanosoma brucei may serve as topogenic signals for import into glycosomes. EMBO J. 1987 Jan;6(1):215–221. doi: 10.1002/j.1460-2075.1987.tb04741.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Williams N. The mitochondrial ATP synthase of Trypanosoma brucei: structure and regulation. J Bioenerg Biomembr. 1994 Apr;26(2):173–178. doi: 10.1007/BF00763066. [DOI] [PubMed] [Google Scholar]
  217. Winter G., Fuchs M., McConville M. J., Stierhof Y. D., Overath P. Surface antigens of Leishmania mexicana amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid. J Cell Sci. 1994 Sep;107(Pt 9):2471–2482. doi: 10.1242/jcs.107.9.2471. [DOI] [PubMed] [Google Scholar]
  218. Wirtz E., Clayton C. Inducible gene expression in trypanosomes mediated by a prokaryotic repressor. Science. 1995 May 26;268(5214):1179–1183. doi: 10.1126/science.7761835. [DOI] [PubMed] [Google Scholar]
  219. Wirtz E., Hartmann C., Clayton C. Gene expression mediated by bacteriophage T3 and T7 RNA polymerases in transgenic trypanosomes. Nucleic Acids Res. 1994 Sep 25;22(19):3887–3894. doi: 10.1093/nar/22.19.3887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Woods A., Baines A. J., Gull K. Evidence for a Mr 88,000 glycoprotein with a transmembrane association to a unique flagellum attachment region in Trypanosoma brucei. J Cell Sci. 1989 Jul;93(Pt 3):501–508. doi: 10.1242/jcs.93.3.501. [DOI] [PubMed] [Google Scholar]
  221. Woods A., Sherwin T., Sasse R., MacRae T. H., Baines A. J., Gull K. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J Cell Sci. 1989 Jul;93(Pt 3):491–500. doi: 10.1242/jcs.93.3.491. [DOI] [PubMed] [Google Scholar]
  222. Xu C., Ray D. S. Isolation of proteins associated with kinetoplast DNA networks in vivo. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1786–1789. doi: 10.1073/pnas.90.5.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Yahiaoui B., Loyens M., Taibi A., Schöneck R., Dubremetz J. F., Ouaissi M. A. Characterization of a Leishmania antigen associated with cytoplasmic vesicles resembling endosomal-like structure. Parasitology. 1993 Dec;107(Pt 5):497–507. doi: 10.1017/s0031182000068074. [DOI] [PubMed] [Google Scholar]
  224. Ziegelbauer K., Multhaup G., Overath P. Molecular characterization of two invariant surface glycoproteins specific for the bloodstream stage of Trypanosoma brucei. J Biol Chem. 1992 May 25;267(15):10797–10803. [PubMed] [Google Scholar]
  225. Ziegelbauer K., Overath P. Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei. J Biol Chem. 1992 May 25;267(15):10791–10796. [PubMed] [Google Scholar]
  226. Ziegelbauer K., Stahl B., Karas M., Stierhof Y. D., Overath P. Proteolytic release of cell surface proteins during differentiation of Trypanosoma brucei. Biochemistry. 1993 Apr 13;32(14):3737–3742. doi: 10.1021/bi00065a028. [DOI] [PubMed] [Google Scholar]
  227. Zilberstein D. Transport of nutrients and ions across membranes of trypanosomatid parasites. Adv Parasitol. 1993;32:261–291. doi: 10.1016/s0065-308x(08)60209-2. [DOI] [PubMed] [Google Scholar]
  228. de Hoop M. J., Ab G. Import of proteins into peroxisomes and other microbodies. Biochem J. 1992 Sep 15;286(Pt 3):657–669. doi: 10.1042/bj2860657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. de Jesus A. R., Cooper R., Espinosa M., Gomes J. E., Garcia E. S., Paul S., Cross G. A. Gene deletion suggests a role for Trypanosoma cruzi surface glycoprotein GP72 in the insect and mammalian stages of the life cycle. J Cell Sci. 1993 Dec;106(Pt 4):1023–1033. doi: 10.1242/jcs.106.4.1023. [DOI] [PubMed] [Google Scholar]
  230. de Souza W., de Carvalho T. U., Benchimol M., Chiari E. Trypanosoma cruzi: ultrastructural, cytochemical and freeze-fracture studies of protein uptake. Exp Parasitol. 1978 Jun;45(1):101–115. doi: 10.1016/0014-4894(78)90050-4. [DOI] [PubMed] [Google Scholar]
  231. ter Kuile B. H. Membrane-related processes and overall energy metabolism in Trypanosoma brucei and other kinetoplastid species. J Bioenerg Biomembr. 1994 Apr;26(2):167–172. doi: 10.1007/BF00763065. [DOI] [PubMed] [Google Scholar]
  232. ter Kulle B. H. Glucose and proline transport in kinetoplastids. Parasitol Today. 1993 Jun;9(6):206–210. doi: 10.1016/0169-4758(93)90009-5. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES