Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1996 Dec;60(4):641–696. doi: 10.1128/mr.60.4.641-696.1996

Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses.

H M Davey 1, D B Kell 1
PMCID: PMC239459  PMID: 8987359

Abstract

The most fundamental questions such as whether a cell is alive, in the sense of being able to divide or to form a colony, may sometimes be very hard to answer, since even axenic microbial cultures are extremely heterogeneous. Analyses that seek to correlate such things as viability, which is a property of an individual cell, with macroscopic measurements of culture variables such as ATP content, respiratory activity, and so on, must inevitably fail. It is therefore necessary to make physiological measurements on individual cells. Flow cytometry is such a technique, which allows one to analyze cells rapidly and individually and permits the quantitative analysis of microbial heterogeneity. It therefore offers many advantages over conventional measurements for both routine and more exploratory analyses of microbial properties. While the technique has been widely applied to the study of mammalian cells, is use in microbiology has until recently been much more limited, largely because of the smaller size of microbes and the consequently smaller optical signals obtainable from them. Since these technical barriers no longer hold, flow cytometry with appropriate stains has been used for the rapid discrimination and identification of microbial cells, for the rapid assessment of viability and of the heterogeneous distributions of a wealth of other more detailed physiological properties, for the analysis of antimicrobial drug-cell interactions, and for the isolation of high-yielding strains of biotechnological interest. Flow cytometric analyses provide an abundance of multivariate data, and special methods have been devised to exploit these. Ongoing advances mean that modern flow cytometers may now be used by nonspecialists to effect a renaissance in our understanding of microbial heterogeneity.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aeschbacher M., Reinhardt C. A., Zbinden G. A rapid cell membrane permeability test using fluorescent dyes and flow cytometry. Cell Biol Toxicol. 1986 Jun;2(2):247–255. doi: 10.1007/BF00122693. [DOI] [PubMed] [Google Scholar]
  2. Alanen K. A., Klemi P. J., Joensuu H., Kujari H., Pekkala E. Comparison of fresh, ethanol-preserved, and paraffin-embedded samples in DNA flow cytometry. Cytometry. 1989 Jan;10(1):81–85. doi: 10.1002/cyto.990100114. [DOI] [PubMed] [Google Scholar]
  3. Alberghina L., Porro D. Quantitative flow cytometry: analysis of protein distributions in budding yeast. A mini-review. Yeast. 1993 Aug;9(8):815–823. doi: 10.1002/yea.320090802. [DOI] [PubMed] [Google Scholar]
  4. Alberghina L., Ranzi B. M., Porro D., Martegani E. Flow cytometry and cell cycle kinetics in continuous and fed-batch fermentations of budding yeast. Biotechnol Prog. 1991 Jul-Aug;7(4):299–304. doi: 10.1021/bp00010a002. [DOI] [PubMed] [Google Scholar]
  5. Allman R., Hann A. C., Manchee R., Lloyd D. Characterization of bacteria by multiparameter flow cytometry. J Appl Bacteriol. 1992 Nov;73(5):438–444. doi: 10.1111/j.1365-2672.1992.tb05001.x. [DOI] [PubMed] [Google Scholar]
  6. Allman R., Schjerven T., Boye E. Cell cycle parameters of Escherichia coli K-12. J Bacteriol. 1991 Dec;173(24):7970–7974. doi: 10.1128/jb.173.24.7970-7974.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Amann R. I., Krumholz L., Stahl D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990 Feb;172(2):762–770. doi: 10.1128/jb.172.2.762-770.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Amann R. I., Zarda B., Stahl D. A., Schleifer K. H. Identification of individual prokaryotic cells by using enzyme-labeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol. 1992 Sep;58(9):3007–3011. doi: 10.1128/aem.58.9.3007-3011.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ambrose W. P., Goodwin P. M., Keller R. A., Martin J. C. Alterations of single molecule fluorescence lifetimes in near-field optical microscopy. Science. 1994 Jul 15;265(5170):364–367. doi: 10.1126/science.265.5170.364. [DOI] [PubMed] [Google Scholar]
  11. An G. H., Bielich J., Auerbach R., Johnson E. A. Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting. Biotechnology (N Y) 1991 Jan;9(1):70–73. doi: 10.1038/nbt0191-70. [DOI] [PubMed] [Google Scholar]
  12. Antia R., Koella J. C., Perrot V. Models of the within-host dynamics of persistent mycobacterial infections. Proc Biol Sci. 1996 Mar 22;263(1368):257–263. doi: 10.1098/rspb.1996.0040. [DOI] [PubMed] [Google Scholar]
  13. Arkin A. P., Goldman E. R., Robles S. J., Goddard C. A., Coleman W. J., Yang M. M., Youvan D. C. Applications of imaging spectroscopy in molecular biology. II. Colony screening based on absorption spectra. Biotechnology (N Y) 1990 Aug;8(8):746–749. doi: 10.1038/nbt0890-746. [DOI] [PubMed] [Google Scholar]
  14. Arrowood M. J., Hurd M. R., Mead J. R. A new method for evaluating experimental cryptosporidial parasite loads using immunofluorescent flow cytometry. J Parasitol. 1995 Jun;81(3):404–409. [PubMed] [Google Scholar]
  15. Asbury C. L., Esposito R., Farmer C., van den Engh G. Fluorescence spectra of DNA dyes measured in a flow cytometer. Cytometry. 1996 Jul 1;24(3):234–242. doi: 10.1002/(SICI)1097-0320(19960701)24:3<234::AID-CYTO6>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  16. Ashley D. M., Bol S. J., Waugh C., Kannourakis G. A novel approach to the measurement of different in vitro leukaemic cell growth parameters: the use of PKH GL fluorescent probes. Leuk Res. 1993 Oct;17(10):873–882. doi: 10.1016/0145-2126(93)90153-c. [DOI] [PubMed] [Google Scholar]
  17. Assaraf Y. G. Characterization by flow cytometry and fluorescein-methotrexate labeling of hydrophilic and lipophilic antifolate resistance in cultured mammalian cells. Anticancer Drugs. 1993 Oct;4(5):535–544. doi: 10.1097/00001813-199310000-00002. [DOI] [PubMed] [Google Scholar]
  18. Austriaco N. R., Jr Review: to bud until death: the genetics of ageing in the yeast, Saccharomyces. Yeast. 1996 Jun 15;12(7):623–630. doi: 10.1002/(SICI)1097-0061(19960615)12:7%3C623::AID-YEA968%3E3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  19. Avery S. V., Harwood J. L., Lloyd D. Quantification and Characterization of Phagocytosis in the Soil Amoeba Acanthamoeba castellanii by Flow Cytometry. Appl Environ Microbiol. 1995 Mar;61(3):1124–1132. doi: 10.1128/aem.61.3.1124-1132.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Azuma T., Harrison G. I., Demain A. L. Isolation of a gramicidin S hyperproducing strain of Bacillus brevis by use of a fluorescence activated cell sorting system. Appl Microbiol Biotechnol. 1992 Nov;38(2):173–178. doi: 10.1007/BF00174463. [DOI] [PubMed] [Google Scholar]
  21. Azzi A. The application of fluorescent probes in membrane studies. Q Rev Biophys. 1975 May;8(2):237–316. doi: 10.1017/s0033583500001803. [DOI] [PubMed] [Google Scholar]
  22. Back J. P., Kroll R. G. The differential fluorescence of bacteria stained with acridine orange and the effects of heat. J Appl Bacteriol. 1991 Jul;71(1):51–58. [PubMed] [Google Scholar]
  23. Backman K., O'Connor M. J., Maruya A., Rudd E., McKay D., Balakrishnan R., Radjai M., DiPasquantonio V., Shoda D., Hatch R. Genetic engineering of metabolic pathways applied to the production of phenylalanine. Ann N Y Acad Sci. 1990;589:16–24. doi: 10.1111/j.1749-6632.1990.tb24231.x. [DOI] [PubMed] [Google Scholar]
  24. Baeza I., Aguilar L., Alvarado-Alemán F., Soto C., Escobar-Gutiérrez A., Mondragón R., González S., Ibáez M., Wong C. Identification of phosphatidate nonlamellar phases on liposomes by flow cytometry. Biochem Cell Biol. 1995 May-Jun;73(5-6):289–297. doi: 10.1139/o95-036. [DOI] [PubMed] [Google Scholar]
  25. Bailey J. E., Birnbaum S., Galazzo J. L., Khosla C., Shanks J. V. Strategies and challenges in metabolic engineering. Ann N Y Acad Sci. 1990;589:1–15. doi: 10.1111/j.1749-6632.1990.tb24230.x. [DOI] [PubMed] [Google Scholar]
  26. Bailey J. E. Toward a science of metabolic engineering. Science. 1991 Jun 21;252(5013):1668–1675. doi: 10.1126/science.2047876. [DOI] [PubMed] [Google Scholar]
  27. Bakker Schut T. C., Kraan Y. M., Barlag W., de Leij L., de Grooth B. G., Greve J. Selective electrofusion of conjugated cells in flow. Biophys J. 1993 Aug;65(2):568–572. doi: 10.1016/S0006-3495(93)81128-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Bakker Schut T. C., de Grooth B. G., Greve J. A new principle of cell sorting by using selective electroporation in a modified flow cytometer. Cytometry. 1990;11(6):659–666. doi: 10.1002/cyto.990110602. [DOI] [PubMed] [Google Scholar]
  29. Ball C., McGonagle M. P. Development and evaluation of a potency index screen for detecting mutants of Penicillium chrysogenum having increased penicillin yield. J Appl Bacteriol. 1978 Aug;45(1):67–74. doi: 10.1111/j.1365-2672.1978.tb04199.x. [DOI] [PubMed] [Google Scholar]
  30. Barcina I., González J. M., Iriberri J., Egea L. Effect of visible light on progressive dormancy of Escherichia coli cells during the survival process in natural fresh water. Appl Environ Microbiol. 1989 Jan;55(1):246–251. doi: 10.1128/aem.55.1.246-251.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Barcina I., González J. M., Iriberri J., Egea L. Survival strategy of Escherichia coli and Enterococcus faecalis in illuminated fresh and marine systems. J Appl Bacteriol. 1990 Feb;68(2):189–198. doi: 10.1111/j.1365-2672.1990.tb02565.x. [DOI] [PubMed] [Google Scholar]
  32. Barlogie B., Spitzer G., Hart J. S., Johnston D. A., Büchner T., Schumann J., Drewinko B. DNA histogram analysis of human hemopoietic cells. Blood. 1976 Aug;48(2):245–258. [PubMed] [Google Scholar]
  33. Barnett J. M., Cuchens M. A., Buchanan W. Automated immunofluorescent speciation of oral bacteria using flow cytometry. J Dent Res. 1984 Aug;63(8):1040–1042. doi: 10.1177/00220345840630080501. [DOI] [PubMed] [Google Scholar]
  34. Baulcombe D. C., Chapman S., Santa Cruz S. Jellyfish green fluorescent protein as a reporter for virus infections. Plant J. 1995 Jun;7(6):1045–1053. doi: 10.1046/j.1365-313x.1995.07061045.x. [DOI] [PubMed] [Google Scholar]
  35. Ben-Amotz A., Avron M. Accumulation of metabolites by halotolerant algae and its industrial potential. Annu Rev Microbiol. 1983;37:95–119. doi: 10.1146/annurev.mi.37.100183.000523. [DOI] [PubMed] [Google Scholar]
  36. Benel L., Ronot X., Mounolou J. C., Gaudemer F., Adolphe M. Compared flow cytometric analysis of mitochondria using 10-n-nonyl acridine orange and rhodamine 123. Basic Appl Histochem. 1989;33(2):71–80. [PubMed] [Google Scholar]
  37. Benson S. C., Zeng Z., Glazer A. N. Fluorescence energy-transfer cyanine heterodimers with high affinity for double-stranded DNA. I. Synthesis and spectroscopic properties. Anal Biochem. 1995 Oct 10;231(1):247–255. doi: 10.1006/abio.1995.1527. [DOI] [PubMed] [Google Scholar]
  38. Benton D. Bioinformatics--principles and potential of a new multidisciplinary tool. Trends Biotechnol. 1996 Aug;14(8):261–272. doi: 10.1016/0167-7799(96)10037-8. [DOI] [PubMed] [Google Scholar]
  39. Berglund D. L., Eversman S. Flow cytometric measurement of pollutant stresses on algal cells. Cytometry. 1988 Mar;9(2):150–155. doi: 10.1002/cyto.990090209. [DOI] [PubMed] [Google Scholar]
  40. Berglund D. L., Taffs R. E., Robertson N. P. A rapid analytical technique for flow cytometric analysis of cell viability using calcofluor white M2R. Cytometry. 1987 Jul;8(4):421–426. doi: 10.1002/cyto.990080412. [DOI] [PubMed] [Google Scholar]
  41. Bertuzzi A., D'Agnano I., Gandolfi A., Graziano A., Starace G., Ubezio P. Study of propidium iodide binding to DNA in intact cells by flow cytometry. Cell Biophys. 1990 Dec;17(3):257–267. doi: 10.1007/BF02990721. [DOI] [PubMed] [Google Scholar]
  42. Betz J. W., Aretz W., Härtel W. Use of flow cytometry in industrial microbiology for strain improvement programs. Cytometry. 1984 Mar;5(2):145–150. doi: 10.1002/cyto.990050208. [DOI] [PubMed] [Google Scholar]
  43. Bevan P., Ryder H., Shaw I. Identifying small-molecule lead compounds: the screening approach to drug discovery. Trends Biotechnol. 1995 Mar;13(3):115–121. doi: 10.1016/S0167-7799(00)88916-7. [DOI] [PubMed] [Google Scholar]
  44. Bickham J. W., Sawin V. L., McBee K., Smolen M. J., Derr J. N. Further flow cytometric studies of the effects of triethylenemelamine on somatic and testicular tissues of the rat. Cytometry. 1994 Mar 1;15(3):222–229. doi: 10.1002/cyto.990150307. [DOI] [PubMed] [Google Scholar]
  45. Binder B. J., Chisholm S. W. Relationship between DNA cycle and growth rate in Synechococcus sp. strain PCC 6301. J Bacteriol. 1990 May;172(5):2313–2319. doi: 10.1128/jb.172.5.2313-2319.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Blanchard J. S. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu Rev Biochem. 1996;65:215–239. doi: 10.1146/annurev.bi.65.070196.001243. [DOI] [PubMed] [Google Scholar]
  47. Blaser M. J. Helicobacter pylori: its role in disease. Clin Infect Dis. 1992 Sep;15(3):386–391. doi: 10.1093/clind/15.3.386. [DOI] [PubMed] [Google Scholar]
  48. Blondelle S. E., Houghten R. A. Novel antimicrobial compounds identified using synthetic combinatorial library technology. Trends Biotechnol. 1996 Feb;14(2):60–65. doi: 10.1016/0167-7799(96)80922-X. [DOI] [PubMed] [Google Scholar]
  49. Bloom B. R., Murray C. J. Tuberculosis: commentary on a reemergent killer. Science. 1992 Aug 21;257(5073):1055–1064. doi: 10.1126/science.257.5073.1055. [DOI] [PubMed] [Google Scholar]
  50. Boddy L., Morris C. W., Wilkins M. F., Tarran G. A., Burkill P. H. Neural network analysis of flow cytometric data for 40 marine phytoplankton species. Cytometry. 1994 Apr 1;15(4):283–293. doi: 10.1002/cyto.990150403. [DOI] [PubMed] [Google Scholar]
  51. Bolhuis H., Molenaar D., Poelarends G., van Veen H. W., Poolman B., Driessen A. J., Konings W. N. Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis. J Bacteriol. 1994 Nov;176(22):6957–6964. doi: 10.1128/jb.176.22.6957-6964.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Boschelli F. Expression of p60v-src in Saccharomyces cerevisiae results in elevation of p34CDC28 kinase activity and release of the dependence of DNA replication on mitosis. Mol Cell Biol. 1993 Aug;13(8):5112–5121. doi: 10.1128/mcb.13.8.5112. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  53. Bosworth N., Towers P. Scintillation proximity assay. Nature. 1989 Sep 14;341(6238):167–168. doi: 10.1038/341167a0. [DOI] [PubMed] [Google Scholar]
  54. Bovill R. A., Shallcross J. A., Mackey B. M. Comparison of the fluorescent redox dye 5-cyano-2,3-ditolyltetrazolium chloride with p-iodonitrotetrazolium violet to detect metabolic activity in heat-stressed Listeria monocytogenes cells. J Appl Bacteriol. 1994 Oct;77(4):353–358. doi: 10.1111/j.1365-2672.1994.tb03434.x. [DOI] [PubMed] [Google Scholar]
  55. Bownds S. E., Kurzynski T. A., Norden M. A., Dufek J. L., Schell R. F. Rapid susceptibility testing for nontuberculosis mycobacteria using flow cytometry. J Clin Microbiol. 1996 Jun;34(6):1386–1390. doi: 10.1128/jcm.34.6.1386-1390.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Boye E., Løbner-Olesen A. Flow cytometry: illuminating microbiology. New Biol. 1990 Feb;2(2):119–125. [PubMed] [Google Scholar]
  57. Boye E., Steen H. B., Skarstad K. Flow cytometry of bacteria: a promising tool in experimental and clinical microbiology. J Gen Microbiol. 1983 Apr;129(4):973–980. doi: 10.1099/00221287-129-4-973. [DOI] [PubMed] [Google Scholar]
  58. Breeuwer P., Drocourt J. L., Bunschoten N., Zwietering M. H., Rombouts F. M., Abee T. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl Environ Microbiol. 1995 Apr;61(4):1614–1619. doi: 10.1128/aem.61.4.1614-1619.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Breeuwer P., Drocourt J. L., Rombouts F. M., Abee T. Energy-dependent, carrier-mediated extrusion of carboxyfluorescein from Saccharomyces cerevisiae allows rapid assessment of cell viability by flow cytometry. Appl Environ Microbiol. 1994 May;60(5):1467–1472. doi: 10.1128/aem.60.5.1467-1472.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Bronk B. V., Druger S. D., Czégé J., Van de Merwe W. P. Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering. Biophys J. 1995 Sep;69(3):1170–1177. doi: 10.1016/S0006-3495(95)79991-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Bronk B. V., Van de Merwe W. P., Stanley M. In vivo measure of average bacterial cell size from a polarized light scattering function. Cytometry. 1992;13(2):155–162. doi: 10.1002/cyto.990130208. [DOI] [PubMed] [Google Scholar]
  62. Brown M. B., Edmonds T. E., Miller J. N., Riley D. P., Seare N. J. Novel instrumentation and biomedical applications of very near infrared fluorescence. Analyst. 1993 Apr;118(4):407–410. doi: 10.1039/an9931800407. [DOI] [PubMed] [Google Scholar]
  63. Bruschi C. V., Chuba P. J. Nonselective enrichment for yeast adenine mutants by flow cytometry. Cytometry. 1988 Jan;9(1):60–67. doi: 10.1002/cyto.990090110. [DOI] [PubMed] [Google Scholar]
  64. Bugeja V. C., Saunders P. T., Bazin M. J. Estimating the mode of growth of individual microbial cells from cell volume distributions. Biosystems. 1985;18(1):47–63. doi: 10.1016/0303-2647(85)90059-0. [DOI] [PubMed] [Google Scholar]
  65. Bull A. T., Goodfellow M., Slater J. H. Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol. 1992;46:219–252. doi: 10.1146/annurev.mi.46.100192.001251. [DOI] [PubMed] [Google Scholar]
  66. Burgess S. M., Delannoy M., Jensen R. E. MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J Cell Biol. 1994 Sep;126(6):1375–1391. doi: 10.1083/jcb.126.6.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Burton D. R. Phage display. Immunotechnology. 1995 Aug;1(2):87–94. doi: 10.1016/1380-2933(95)00013-5. [DOI] [PubMed] [Google Scholar]
  68. Button D. K. Kinetics of nutrient-limited transport and microbial growth. Microbiol Rev. 1985 Sep;49(3):270–297. doi: 10.1128/mr.49.3.270-297.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Button D. K., Robertson B. R., McIntosh D., Jüttner F. Interactions between marine bacteria and dissolved-phase and beached hydrocarbons after the Exxon Valdez oil spill. Appl Environ Microbiol. 1992 Jan;58(1):243–251. doi: 10.1128/aem.58.1.243-251.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Button D. K., Schut F., Quang P., Martin R., Robertson B. R. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol. 1993 Mar;59(3):881–891. doi: 10.1128/aem.59.3.881-891.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Böhmer R. M. Flow cytometric detection of a two-step cell death induced by hyperthermia. Cytometry. 1985 May;6(3):215–218. doi: 10.1002/cyto.990060307. [DOI] [PubMed] [Google Scholar]
  72. CROSLAND-TAYLOR P. J. A device for counting small particles suspended in a fluid through a tube. Nature. 1953 Jan 3;171(4340):37–38. doi: 10.1038/171037b0. [DOI] [PubMed] [Google Scholar]
  73. Cairns J., Overbaugh J., Miller S. The origin of mutants. Nature. 1988 Sep 8;335(6186):142–145. doi: 10.1038/335142a0. [DOI] [PubMed] [Google Scholar]
  74. Cameron D. C., Tong I. T. Cellular and metabolic engineering. An overview. Appl Biochem Biotechnol. 1993 Jan-Feb;38(1-2):105–140. doi: 10.1007/BF02916416. [DOI] [PubMed] [Google Scholar]
  75. Camplejohn R. S. The measurement of intracellular antigens and DNA by multiparametric flow cytometry. J Microsc. 1994 Oct;176(Pt 1):1–7. doi: 10.1111/j.1365-2818.1994.tb03493.x. [DOI] [PubMed] [Google Scholar]
  76. Cantinieaux B., Courtoy P., Fondu P. Accurate flow cytometric measurement of bacteria concentrations. Pathobiology. 1993;61(2):95–97. doi: 10.1159/000163768. [DOI] [PubMed] [Google Scholar]
  77. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  78. Chen L. B. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol. 1988;4:155–181. doi: 10.1146/annurev.cb.04.110188.001103. [DOI] [PubMed] [Google Scholar]
  79. Chen L. B., Summerhayes I. C., Johnson L. V., Walsh M. L., Bernal S. D., Lampidis T. J. Probing mitochondria in living cells with rhodamine 123. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):141–155. doi: 10.1101/sqb.1982.046.01.018. [DOI] [PubMed] [Google Scholar]
  80. Chung J. D., Conner S., Stephanopoulos G. Flow cytometric study of differentiating cultures of Bacillus subtilis. Cytometry. 1995 Aug 1;20(4):324–333. doi: 10.1002/cyto.990200408. [DOI] [PubMed] [Google Scholar]
  81. Chung J. D., Stephanopoulos G., Ireton K., Grossman A. D. Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J Bacteriol. 1994 Apr;176(7):1977–1984. doi: 10.1128/jb.176.7.1977-1984.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Cid V. J., Alvarez A. M., Santos A. I., Nombela C., Sanchez M. Yeast exo-beta-glucanases can be used as efficient and readily detectable reporter genes in Saccharomyces cerevisiae. Yeast. 1994 Jun;10(6):747–756. doi: 10.1002/yea.320100606. [DOI] [PubMed] [Google Scholar]
  83. Cimprich P., Slavík J., Kotyk A. Distribution of individual cytoplasmic pH values in a population of the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett. 1995 Aug 1;130(2-3):245–251. doi: 10.1111/j.1574-6968.1995.tb07727.x. [DOI] [PubMed] [Google Scholar]
  84. Clackson T., Hoogenboom H. R., Griffiths A. D., Winter G. Making antibody fragments using phage display libraries. Nature. 1991 Aug 15;352(6336):624–628. doi: 10.1038/352624a0. [DOI] [PubMed] [Google Scholar]
  85. Clarke D. J. Biosensors in process control. Philos Trans R Soc Lond B Biol Sci. 1987 Aug 28;316(1176):169–181. doi: 10.1098/rstb.1987.0026. [DOI] [PubMed] [Google Scholar]
  86. Clarke D. J., Calder M. R., Carr R. J., Blake-Coleman B. C., Moody S. C., Collinge T. A. The development and application of biosensing devices for bioreactor monitoring and control. Biosensors. 1985;1(3):213–320. doi: 10.1016/0265-928x(85)85001-x. [DOI] [PubMed] [Google Scholar]
  87. Cleaveland E. S., Monks A., Vaigro-Wolff A., Zaharevitz D. W., Paull K., Ardalan K., Cooney D. A., Ford H., Jr Site of action of two novel pyrimidine biosynthesis inhibitors accurately predicted by the compare program. Biochem Pharmacol. 1995 Mar 30;49(7):947–954. doi: 10.1016/0006-2952(95)00009-o. [DOI] [PubMed] [Google Scholar]
  88. Colice G. L. Pulmonary tuberculosis. Is resurgence due to reactivation or new infection? Postgrad Med. 1995 Apr;97(4):35-8, 44, 47-8. [PubMed] [Google Scholar]
  89. Conrad R. C., Giver L., Tian Y., Ellington A. D. In vitro selection of nucleic acid aptamers that bind proteins. Methods Enzymol. 1996;267:336–367. doi: 10.1016/s0076-6879(96)67022-0. [DOI] [PubMed] [Google Scholar]
  90. Cooper S. Leucine uptake and protein synthesis are exponential during the division cycle of Escherichia coli B/r. J Bacteriol. 1988 Jan;170(1):436–438. doi: 10.1128/jb.170.1.436-438.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Correa P. Helicobacter pylori and gastric cancer: state of the art. Cancer Epidemiol Biomarkers Prev. 1996 Jun;5(6):477–481. [PubMed] [Google Scholar]
  92. Cotter T. G., al-Rubeai M. Cell death (apoptosis) in cell culture systems. Trends Biotechnol. 1995 Apr;13(4):150–155. doi: 10.1016/S0167-7799(00)88926-X. [DOI] [PubMed] [Google Scholar]
  93. Coxon A., Bestor T. H. Proteins that glow in green and blue. Chem Biol. 1995 Mar;2(3):119–121. doi: 10.1016/1074-5521(95)90011-x. [DOI] [PubMed] [Google Scholar]
  94. Crameri A., Whitehorn E. A., Tate E., Stemmer W. P. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol. 1996 Mar;14(3):315–319. doi: 10.1038/nbt0396-315. [DOI] [PubMed] [Google Scholar]
  95. Crissman H. A., Steinkamp J. A. Cell cycle-related changes in chromatin structure detected by flow cytometry using multiple DNA fluorochromes. Eur J Histochem. 1993;37(2):129–138. [PubMed] [Google Scholar]
  96. Crissman H. A., Stevenson A. P., Orlicky D. J., Kissane R. J. Detailed studies on the application of three fluorescent antibiotics for DNA staining in flow cytometry. Stain Technol. 1978 Nov;53(6):321–330. doi: 10.3109/10520297809111954. [DOI] [PubMed] [Google Scholar]
  97. Crissman H. A., Tobey R. A. Specific staining of DNA with the fluorescent antibiotics, mithramycin, chromomycin, and olivomycin. Methods Cell Biol. 1990;33:97–103. doi: 10.1016/s0091-679x(08)60515-4. [DOI] [PubMed] [Google Scholar]
  98. Crittenden P. D., Porter N. Lichen-forming fungi: potential sources of novel metabolites. Trends Biotechnol. 1991 Dec;9(12):409–414. doi: 10.1016/0167-7799(91)90141-4. [DOI] [PubMed] [Google Scholar]
  99. Cubitt A. B., Heim R., Adams S. R., Boyd A. E., Gross L. A., Tsien R. Y. Understanding, improving and using green fluorescent proteins. Trends Biochem Sci. 1995 Nov;20(11):448–455. doi: 10.1016/s0968-0004(00)89099-4. [DOI] [PubMed] [Google Scholar]
  100. Cucci T. L., Shumway S. E., Brown W. S., Newell C. R. Using phytoplankton and flow cytometry to analyze grazing by marine organisms. Cytometry. 1989 Sep;10(5):659–669. doi: 10.1002/cyto.990100523. [DOI] [PubMed] [Google Scholar]
  101. Custer T. W., Bickham J. W., Lyne T. B., Lewis T., Ruedas L. A., Custer C. M., Melancon M. J. Flow cytometry for monitoring contaminant exposure in black-crowned night-herons. Arch Environ Contam Toxicol. 1994 Aug;27(2):176–179. doi: 10.1007/BF00214260. [DOI] [PubMed] [Google Scholar]
  102. Darzynkiewicz Z. Differential staining of DNA and RNA in intact cells and isolated cell nuclei with acridine orange. Methods Cell Biol. 1990;33:285–298. doi: 10.1016/s0091-679x(08)60532-4. [DOI] [PubMed] [Google Scholar]
  103. Davey H. M., Davey C. L., Woodward A. M., Edmonds A. N., Lee A. W., Kell D. B. Oscillatory, stochastic and chaotic growth rate fluctuations in permittistatically controlled yeast cultures. Biosystems. 1996;39(1):43–61. doi: 10.1016/0303-2647(95)01577-9. [DOI] [PubMed] [Google Scholar]
  104. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994 Apr 15;264(5157):375–382. doi: 10.1126/science.8153624. [DOI] [PubMed] [Google Scholar]
  105. Davis K. A., Abrams B., Lin Y., Jayasena S. D. Use of a high affinity DNA ligand in flow cytometry. Nucleic Acids Res. 1996 Feb 15;24(4):702–706. doi: 10.1093/nar/24.4.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. De Rijk P., Van de Peer Y., De Wachter R. Database on the structure of large ribosomal subunit RNA. Nucleic Acids Res. 1996 Jan 1;24(1):92–97. doi: 10.1093/nar/24.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. DeCross A. J., Marshall B. J. The role of Helicobacter pylori in acid-peptic disease. Am J Med Sci. 1993 Dec;306(6):381–392. doi: 10.1097/00000441-199312000-00006. [DOI] [PubMed] [Google Scholar]
  108. DeLong E. F., Wickham G. S., Pace N. R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989 Mar 10;243(4896):1360–1363. doi: 10.1126/science.2466341. [DOI] [PubMed] [Google Scholar]
  109. DeLong E. F., Wickham G. S., Pace N. R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989 Mar 10;243(4896):1360–1363. doi: 10.1126/science.2466341. [DOI] [PubMed] [Google Scholar]
  110. DeLong E. F., Wu K. Y., Prézelin B. B., Jovine R. V. High abundance of Archaea in Antarctic marine picoplankton. Nature. 1994 Oct 20;371(6499):695–697. doi: 10.1038/371695a0. [DOI] [PubMed] [Google Scholar]
  111. Deere D., Porter J., Edwards C., Pickup R. Evaluation of the suitability of bis-(1,3-dibutylbarbituric acid) trimethine oxonol, (diBA-C4(3)-), for the flow cytometric assessment of bacterial viability. FEMS Microbiol Lett. 1995 Aug 1;130(2-3):165–169. doi: 10.1111/j.1574-6968.1995.tb07714.x. [DOI] [PubMed] [Google Scholar]
  112. Degelau A., Freitag R., Linz F., Middendorf C., Scheper T., Bley T., Müller S., Stoll P., Reardon K. F. Immuno- and flow cytometric analytical methods for biotechnological research and process monitoring. J Biotechnol. 1992 Aug;25(1-2):115–144. doi: 10.1016/0168-1656(92)90112-m. [DOI] [PubMed] [Google Scholar]
  113. Delagrave S., Hawtin R. E., Silva C. M., Yang M. M., Youvan D. C. Red-shifted excitation mutants of the green fluorescent protein. Biotechnology (N Y) 1995 Feb;13(2):151–154. doi: 10.1038/nbt0295-151. [DOI] [PubMed] [Google Scholar]
  114. Delia D., Martinez E., Fontanella E., Aiello A. Two- and three-color immunofluorescence using aminocoumarin, fluorescein, and phycoerythrin-labelled antibodies and single laser flow cytometry. Cytometry. 1991;12(6):537–544. doi: 10.1002/cyto.990120610. [DOI] [PubMed] [Google Scholar]
  115. Dell'Arciprete R., Stella M., Fornaro M., Ciccocioppo R., Capri M. G., Naglieri A. M., Alberti S. High-efficiency expression gene cloning by flow cytometry. J Histochem Cytochem. 1996 Jun;44(6):629–640. doi: 10.1177/44.6.8666748. [DOI] [PubMed] [Google Scholar]
  116. Demers S., Davis K., Cucci T. L. A flow cytometric approach to assessing the environmental and physiological status of phytoplankton. Cytometry. 1989 Sep;10(5):644–652. doi: 10.1002/cyto.990100521. [DOI] [PubMed] [Google Scholar]
  117. Demers S., Kim J., Legendre P., Legendre L. Analyzing multivariate flow cytometric data in aquatic sciences. Cytometry. 1992;13(3):291–298. doi: 10.1002/cyto.990130311. [DOI] [PubMed] [Google Scholar]
  118. Deschamps J. R., Miller C. E., Ward K. B. Rapid purification of recombinant green fluorescent protein using the hydrophobic properties of an HPLC size-exclusion column. Protein Expr Purif. 1995 Aug;6(4):555–558. doi: 10.1006/prep.1995.1073. [DOI] [PubMed] [Google Scholar]
  119. Desmonts C., Minet J., Colwell R., Cormier M. Fluorescent-antibody method useful for detecting viable but nonculturable Salmonella spp. in chlorinated wastewater. Appl Environ Microbiol. 1990 May;56(5):1448–1452. doi: 10.1128/aem.56.5.1448-1452.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Dhandayuthapani S., Via L. E., Thomas C. A., Horowitz P. M., Deretic D., Deretic V. Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Mol Microbiol. 1995 Sep;17(5):901–912. doi: 10.1111/j.1365-2958.1995.mmi_17050901.x. [DOI] [PubMed] [Google Scholar]
  121. Diaper J. P., Edwards C. Survival of Staphylococcus aureus in lakewater monitored by flow cytometry. Microbiology. 1994 Jan;140(Pt 1):35–42. doi: 10.1099/13500872-140-1-35. [DOI] [PubMed] [Google Scholar]
  122. Diaper J. P., Tither K., Edwards C. Rapid assessment of bacterial viability by flow cytometry. Appl Microbiol Biotechnol. 1992 Nov;38(2):268–272. doi: 10.1007/BF00174481. [DOI] [PubMed] [Google Scholar]
  123. Dien B. S., Peterson M. S., Srienc F. Cell-cycle analysis of Saccharomyces cerevisiae. Methods Cell Biol. 1994;42(Pt B):457–475. doi: 10.1016/s0091-679x(08)61090-0. [DOI] [PubMed] [Google Scholar]
  124. Dien B. S., Srienc F. Bromodeoxyuridine labeling and flow cytometric identification of replicating Saccharomyces cerevisiae cells: lengths of cell cycle phases and population variability at specific cell cycle positions. Biotechnol Prog. 1991 Jul-Aug;7(4):291–298. doi: 10.1021/bp00010a001. [DOI] [PubMed] [Google Scholar]
  125. Dolbeare F. Fluorescent staining of enzymes for flow cytometry. Methods Cell Biol. 1990;33:81–88. doi: 10.1016/s0091-679x(08)60513-0. [DOI] [PubMed] [Google Scholar]
  126. Domingue G. J., Ghoniem G. M., Bost K. L., Fermin C., Human L. G. Dormant microbes in interstitial cystitis. J Urol. 1995 Apr;153(4):1321–1326. [PubMed] [Google Scholar]
  127. Donachie W. D. The cell cycle of Escherichia coli. Annu Rev Microbiol. 1993;47:199–230. doi: 10.1146/annurev.mi.47.100193.001215. [DOI] [PubMed] [Google Scholar]
  128. Donnelly C. W., Baigent G. J., Briggs E. H. Flow cytometry for automated analysis of milk containing Listeria monocytogenes. J Assoc Off Anal Chem. 1988 May-Jun;71(3):655–658. [PubMed] [Google Scholar]
  129. Donnelly C. W., Baigent G. J. Method for flow cytometric detection of Listeria monocytogenes in milk. Appl Environ Microbiol. 1986 Oct;52(4):689–695. doi: 10.1128/aem.52.4.689-695.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Doornbos R. M., De Grooth B. G., Kraan Y. M., Van Der Poel C. J., Greve J. Visible diode lasers can be used for flow cytometric immunofluorescence and DNA analysis. Cytometry. 1994 Mar 1;15(3):267–271. doi: 10.1002/cyto.990150312. [DOI] [PubMed] [Google Scholar]
  131. Doornbos R. M., Hennink E. J., Putman C. A., De Grooth B. G., Greve J. White blood cell differentiation using a solid state flow cytometer. Cytometry. 1993;14(6):589–594. doi: 10.1002/cyto.990140602. [DOI] [PubMed] [Google Scholar]
  132. Doornbos R. M., Hoekstra A. G., Deurloo K. E., De Grooth B. G., Sloot P. M., Greve J. Lissajous-like patterns in scatter plots of calibration beads. Cytometry. 1994 Jul 1;16(3):236–242. doi: 10.1002/cyto.990160307. [DOI] [PubMed] [Google Scholar]
  133. Douglas R. H., Ballou C. E. Isolation of Kluyveromyces lactis mannoprotein mutants by fluorescence-activated cell sorting. J Biol Chem. 1980 Jun 25;255(12):5979–5985. [PubMed] [Google Scholar]
  134. Doyle R. World birth-control use. Sci Am. 1996 Sep;275(3):34–34. doi: 10.1038/scientificamerican0996-34. [DOI] [PubMed] [Google Scholar]
  135. Drake J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160–7164. doi: 10.1073/pnas.88.16.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Dubelaar G. B., Groenewegen A. C., Stokdijk W., van den Engh G. J., Visser J. W. Optical plankton analyser: a flow cytometer for plankton analysis, II: Specifications. Cytometry. 1989 Sep;10(5):529–539. doi: 10.1002/cyto.990100508. [DOI] [PubMed] [Google Scholar]
  137. Dumortier F., Argüelles J. C., Thevelein J. M. Constitutive glucose-induced activation of the Ras-cAMP pathway and aberrant stationary-phase entry on a glucose-containing medium in the Saccharomyces cerevisiae glucose-repression mutant hex2. Microbiology. 1995 Jul;141(Pt 7):1559–1566. doi: 10.1099/13500872-141-7-1559. [DOI] [PubMed] [Google Scholar]
  138. Durodie J., Coleman K., Simpson I. N., Loughborough S. H., Winstanley D. W. Rapid detection of antimicrobial activity using flow cytometry. Cytometry. 1995 Dec 1;21(4):374–377. doi: 10.1002/cyto.990210409. [DOI] [PubMed] [Google Scholar]
  139. Dux R., Kindler-Röhrborn A., Lennartz K., Rajewsky M. F. Calibration of fluorescence intensities to quantify antibody binding surface determinants of cell subpopulations by flow cytometry. Cytometry. 1991;12(5):422–428. doi: 10.1002/cyto.990120507. [DOI] [PubMed] [Google Scholar]
  140. Ecker D. J., Crooke S. T. Combinatorial drug discovery: which methods will produce the greatest value? Biotechnology (N Y) 1995 Apr;13(4):351–360. doi: 10.1038/nbt0495-351. [DOI] [PubMed] [Google Scholar]
  141. Eidt S., Stolte M. The significance of Helicobacter pylori in relation to gastric cancer and lymphoma. Eur J Gastroenterol Hepatol. 1995 Apr;7(4):318–321. [PubMed] [Google Scholar]
  142. Eitzman P. D., Hendrick J. L., Srienc F. Quantitative immunofluorescence in single Saccharomyces cerevisiae cells. Cytometry. 1989 Jul;10(4):475–483. doi: 10.1002/cyto.990100417. [DOI] [PubMed] [Google Scholar]
  143. Ellington A. D., Szostak J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990 Aug 30;346(6287):818–822. doi: 10.1038/346818a0. [DOI] [PubMed] [Google Scholar]
  144. Emaus R. K., Grunwald R., Lemasters J. J. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta. 1986 Jul 23;850(3):436–448. doi: 10.1016/0005-2728(86)90112-x. [DOI] [PubMed] [Google Scholar]
  145. Embley T. M., Hirt R. P., Williams D. M. Biodiversity at the molecular level: the domains, kingdoms and phyla of life. Philos Trans R Soc Lond B Biol Sci. 1994 Jul 29;345(1311):21–33. doi: 10.1098/rstb.1994.0083. [DOI] [PubMed] [Google Scholar]
  146. Embley T. M., Stackebrandt E. The molecular phylogeny and systematics of the actinomycetes. Annu Rev Microbiol. 1994;48:257–289. doi: 10.1146/annurev.mi.48.100194.001353. [DOI] [PubMed] [Google Scholar]
  147. Entrala E., Rueda-Rubio M., Janssen D., Mascaró C. Influence of hydrogen peroxide on acid-fast staining of Cryptosporidium parvum oocysts. Int J Parasitol. 1995 Dec;25(12):1473–1477. doi: 10.1016/0020-7519(95)00091-7. [DOI] [PubMed] [Google Scholar]
  148. Epstein I. R. The consequences of imperfect mixing in autocatalytic chemical and biological systems. Nature. 1995 Mar 23;374(6520):321–327. doi: 10.1038/374321a0. [DOI] [PubMed] [Google Scholar]
  149. Erb E., Janda K. D., Brenner S. Recursive deconvolution of combinatorial chemical libraries. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11422–11426. doi: 10.1073/pnas.91.24.11422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Eriksen B., Miller D. S., Murad T. M., Lurain J. R., Bauer K. D. Dual-parameter flow cytometric analysis coupling the measurements of forward-angle light scatter and DNA content of archival ovarian carcinomas of low malignant potential. Anal Quant Cytol Histol. 1991 Feb;13(1):45–53. [PubMed] [Google Scholar]
  151. Evans M. E., Pollack M., Hardegen N. J., Koles N. L., Guelde G., Chia J. K. Fluorescence-activated cell sorter analysis of binding by lipopolysaccharide-specific monoclonal antibodies to gram-negative bacteria. J Infect Dis. 1990 Jul;162(1):148–155. doi: 10.1093/infdis/162.1.148. [DOI] [PubMed] [Google Scholar]
  152. Evans M. E., Pollack M., Koles N. L., Hardegen N. J., Panopoulos D. Lipopolysaccharide heterogeneity in Escherichia coli J5 variants: analysis by flow cytometry. J Infect Dis. 1992 Oct;166(4):803–811. doi: 10.1093/infdis/166.4.803. [DOI] [PubMed] [Google Scholar]
  153. Festin R., Björkland A., Tötterman T. H. Single laser flow cytometric detection of lymphocytes binding three antibodies labelled with fluorescein, phycoerythrin and a novel tandem fluorochrome conjugate. J Immunol Methods. 1990 Jan 24;126(1):69–78. doi: 10.1016/0022-1759(90)90013-l. [DOI] [PubMed] [Google Scholar]
  154. Fiechter A., Sonnleitner B. Non-invasive concepts in metabolic studies. Adv Microb Physiol. 1994;36:145–180. doi: 10.1016/s0065-2911(08)60179-4. [DOI] [PubMed] [Google Scholar]
  155. Field S., Pollack M., Morrison D. C. Development of an anti-idiotype monoclonal antibody mimicking the structure of lipopolysaccharide (LPS) inner-core determinants. Microb Pathog. 1993 Aug;15(2):103–120. doi: 10.1006/mpat.1993.1061. [DOI] [PubMed] [Google Scholar]
  156. Forman D. Helicobacter pylori and gastric cancer. Scand J Gastroenterol Suppl. 1996;215:48–51. [PubMed] [Google Scholar]
  157. Foster P. L. Adaptive mutation: the uses of adversity. Annu Rev Microbiol. 1993;47:467–504. doi: 10.1146/annurev.mi.47.100193.002343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Fouchet P., Jayat C., Héchard Y., Ratinaud M. H., Frelat G. Recent advances of flow cytometry in fundamental and applied microbiology. Biol Cell. 1993;78(1-2):95–109. doi: 10.1016/0248-4900(93)90120-4. [DOI] [PubMed] [Google Scholar]
  159. Francesconi S., Park H., Wang T. S. Fission yeast with DNA polymerase delta temperature-sensitive alleles exhibits cell division cycle phenotype. Nucleic Acids Res. 1993 Aug 11;21(16):3821–3828. doi: 10.1093/nar/21.16.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Francisco J. A., Campbell R., Iverson B. L., Georgiou G. Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10444–10448. doi: 10.1073/pnas.90.22.10444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Franco C. M., Coutinho L. E. Detection of novel secondary metabolites. Crit Rev Biotechnol. 1991;11(3):193–276. doi: 10.3109/07388559109069184. [DOI] [PubMed] [Google Scholar]
  162. Frankel D. S., Frankel S. L., Binder B. J., Vogt R. F. Application of neural networks to flow cytometry data analysis and real-time cell classification. Cytometry. 1996 Apr 1;23(4):290–302. doi: 10.1002/(SICI)1097-0320(19960401)23:4<290::AID-CYTO5>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  163. Frankel D. S., Olson R. J., Frankel S. L., Chisholm S. W. Use of a neural net computer system for analysis of flow cytometric data of phytoplankton populations. Cytometry. 1989 Sep;10(5):540–550. doi: 10.1002/cyto.990100509. [DOI] [PubMed] [Google Scholar]
  164. Fredricks D. N., Relman D. A. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin Microbiol Rev. 1996 Jan;9(1):18–33. doi: 10.1128/cmr.9.1.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Freier S. M., Konings D. A., Wyatt J. R., Ecker D. J. Deconvolution of combinatorial libraries for drug discovery: a model system. J Med Chem. 1995 Jan 20;38(2):344–352. doi: 10.1021/jm00002a016. [DOI] [PubMed] [Google Scholar]
  166. Fulwyler M. J. Electronic separation of biological cells by volume. Science. 1965 Nov 12;150(3698):910–911. doi: 10.1126/science.150.3698.910. [DOI] [PubMed] [Google Scholar]
  167. Fuqua W. C., Winans S. C., Greenberg E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 1994 Jan;176(2):269–275. doi: 10.1128/jb.176.2.269-275.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Gadbois D. M., Crissman H. A., Tobey R. A., Bradbury E. M. Multiple kinase arrest points in the G1 phase of nontransformed mammalian cells are absent in transformed cells. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8626–8630. doi: 10.1073/pnas.89.18.8626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Galbraith D. W. Flow cytometry and sorting of plant protoplasts and cells. Methods Cell Biol. 1994;42(Pt B):539–561. doi: 10.1016/s0091-679x(08)61094-8. [DOI] [PubMed] [Google Scholar]
  170. Galbraith D. W., Harkins K. R., Jefferson R. A. Flow cytometric characterization of the chlorophyll contents and size distributions of plant protoplasts. Cytometry. 1988 Jan;9(1):75–83. doi: 10.1002/cyto.990090112. [DOI] [PubMed] [Google Scholar]
  171. Galbraith D. W., Lambert G. M., Grebenok R. J., Sheen J. Flow cytometric analysis of transgene expression in higher plants: green-fluorescent protein. Methods Cell Biol. 1995;50:3–14. doi: 10.1016/s0091-679x(08)61018-3. [DOI] [PubMed] [Google Scholar]
  172. Gallet P. F., Maftah A., Petit J. M., Denis-Gay M., Julien R. Direct cardiolipin assay in yeast using the red fluorescence emission of 10-N-nonyl acridine orange. Eur J Biochem. 1995 Feb 15;228(1):113–119. doi: 10.1111/j.1432-1033.1995.tb20238.x. [DOI] [PubMed] [Google Scholar]
  173. Gallop M. A., Barrett R. W., Dower W. J., Fodor S. P., Gordon E. M. Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J Med Chem. 1994 Apr 29;37(9):1233–1251. doi: 10.1021/jm00035a001. [DOI] [PubMed] [Google Scholar]
  174. Gangadharam P. R. Mycobacterial dormancy. Tuber Lung Dis. 1995 Dec;76(6):477–479. doi: 10.1016/0962-8479(95)90521-9. [DOI] [PubMed] [Google Scholar]
  175. Gant V. A., Warnes G., Phillips I., Savidge G. F. The application of flow cytometry to the study of bacterial responses to antibiotics. J Med Microbiol. 1993 Aug;39(2):147–154. doi: 10.1099/00222615-39-2-147. [DOI] [PubMed] [Google Scholar]
  176. Gapski G. R., Whiteley J. M., Rader J. I., Cramer P. L., Henderson G. B., Neef V., Huennekens F. M. Synthesis of a fluorescent derivative of amethopterin,. J Med Chem. 1975 May;18(5):526–528. doi: 10.1021/jm00239a020. [DOI] [PubMed] [Google Scholar]
  177. Garrard L. J., Yang M., O'Connell M. P., Kelley R. F., Henner D. J. Fab assembly and enrichment in a monovalent phage display system. Biotechnology (N Y) 1991 Dec;9(12):1373–1377. doi: 10.1038/nbt1291-1373. [DOI] [PubMed] [Google Scholar]
  178. Gaudray P., Trotter J., Wahl G. M. Fluorescent methotrexate labeling and flow cytometric analysis of cells containing low levels of dihydrofolate reductase. J Biol Chem. 1986 May 15;261(14):6285–6292. [PubMed] [Google Scholar]
  179. Gibellini D., Zauli G., Re M. C., Furlini G., Lolli S., Bassini A., Celeghini C., La Placa M. In situ polymerase chain reaction technique revealed by flow cytometry as a tool for gene detection. Anal Biochem. 1995 Jul 1;228(2):252–258. doi: 10.1006/abio.1995.1347. [DOI] [PubMed] [Google Scholar]
  180. Gift E. A., Park H. J., Paradis G. A., Demain A. L., Weaver J. C. FACS-based isolation of slowly growing cells: double encapsulation of yeast in gel microdrops. Nat Biotechnol. 1996 Jul;14(7):884–887. doi: 10.1038/nbt0796-884. [DOI] [PubMed] [Google Scholar]
  181. Gift E. A., Weaver J. C. Observation of extremely heterogeneous electroporative molecular uptake by Saccharomyces cerevisiae which changes with electric field pulse amplitude. Biochim Biophys Acta. 1995 Mar 8;1234(1):52–62. doi: 10.1016/0005-2736(94)00258-q. [DOI] [PubMed] [Google Scholar]
  182. Giovannoni S. J., DeLong E. F., Olsen G. J., Pace N. R. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol. 1988 Feb;170(2):720–726. doi: 10.1128/jb.170.2.720-726.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Glazer A. N., Peck K., Mathies R. A. A stable double-stranded DNA-ethidium homodimer complex: application to picogram fluorescence detection of DNA in agarose gels. Proc Natl Acad Sci U S A. 1990 May;87(10):3851–3855. doi: 10.1073/pnas.87.10.3851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Gnant M. F., Blijham G., Reiner A., Reiner G., Reynders M., Schutte B., van Asche C., Steger G., Jakesz R. DNA ploidy and other results of DNA flow cytometry as prognostic factors in operable breast cancer: 10 year results of a randomised study. Eur J Cancer. 1992;28(2-3):711–716. doi: 10.1016/s0959-8049(05)80132-7. [DOI] [PubMed] [Google Scholar]
  185. Goetz A. F., Vane G., Solomon J. E., Rock B. N. Imaging spectrometry for Earth remote sensing. Science. 1985 Jun 7;228(4704):1147–1153. doi: 10.1126/science.228.4704.1147. [DOI] [PubMed] [Google Scholar]
  186. Goldman E. R., Youvan D. C. An algorithmically optimized combinatorial library screened by digital imaging spectroscopy. Biotechnology (N Y) 1992 Dec;10(12):1557–1561. doi: 10.1038/nbt1292-1557. [DOI] [PubMed] [Google Scholar]
  187. Goodacre R., Kell D. B. Pyrolysis mass spectrometry and its applications in biotechnology. Curr Opin Biotechnol. 1996 Feb 1;7(1):20–28. doi: 10.1016/s0958-1669(96)80090-5. [DOI] [PubMed] [Google Scholar]
  188. Goodacre R., Neal M. J., Kell D. B. Quantitative analysis of multivariate data using artificial neural networks: a tutorial review and applications to the deconvolution of pyrolysis mass spectra. Zentralbl Bakteriol. 1996 Aug;284(4):516–539. doi: 10.1016/s0934-8840(96)80004-1. [DOI] [PubMed] [Google Scholar]
  189. Goodwin P. M., Johnson M. E., Martin J. C., Ambrose W. P., Marrone B. L., Jett J. H., Keller R. A. Rapid sizing of individual fluorescently stained DNA fragments by flow cytometry. Nucleic Acids Res. 1993 Feb 25;21(4):803–806. doi: 10.1093/nar/21.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Gordon E. M., Barrett R. W., Dower W. J., Fodor S. P., Gallop M. A. Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J Med Chem. 1994 May 13;37(10):1385–1401. doi: 10.1021/jm00036a001. [DOI] [PubMed] [Google Scholar]
  191. Gray J. W., Langlois R. G. Chromosome classification and purification using flow cytometry and sorting. Annu Rev Biophys Biophys Chem. 1986;15:195–235. doi: 10.1146/annurev.bb.15.060186.001211. [DOI] [PubMed] [Google Scholar]
  192. Graziadei L., Burfeind P., Bar-Sagi D. Introduction of unlabeled proteins into living cells by electroporation and isolation of viable protein-loaded cells using dextran-fluorescein isothiocyanate as a marker for protein uptake. Anal Biochem. 1991 Apr;194(1):198–203. doi: 10.1016/0003-2697(91)90168-s. [DOI] [PubMed] [Google Scholar]
  193. Green L., Petersen B., Steimel L., Haeber P., Current W. Rapid determination of antifungal activity by flow cytometry. J Clin Microbiol. 1994 Apr;32(4):1088–1091. doi: 10.1128/jcm.32.4.1088-1091.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Gribbon L. T., Barer M. R. Oxidative metabolism in nonculturable Helicobacter pylori and Vibrio vulnificus cells studied by substrate-enhanced tetrazolium reduction and digital image processing. Appl Environ Microbiol. 1995 Sep;61(9):3379–3384. doi: 10.1128/aem.61.9.3379-3384.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Groen A. K., Wanders R. J., Westerhoff H. V., van der Meer R., Tager J. M. Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem. 1982 Mar 25;257(6):2754–2757. [PubMed] [Google Scholar]
  196. Gross H. J., Verwer B., Houck D., Recktenwald D. Detection of rare cells at a frequency of one per million by flow cytometry. Cytometry. 1993;14(5):519–526. doi: 10.1002/cyto.990140511. [DOI] [PubMed] [Google Scholar]
  197. Grossman A. D., Losick R. Extracellular control of spore formation in Bacillus subtilis. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4369–4373. doi: 10.1073/pnas.85.12.4369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Gys T., Hubens A., Neels H., Lauwers L. F., Peeters R. Prognostic value of gastric intramural pH in surgical intensive care patients. Crit Care Med. 1988 Dec;16(12):1222–1224. doi: 10.1097/00003246-198812000-00009. [DOI] [PubMed] [Google Scholar]
  199. Ha T., Enderle T., Ogletree D. F., Chemla D. S., Selvin P. R., Weiss S. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6264–6268. doi: 10.1073/pnas.93.13.6264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Hall B. G. Adaptive mutations in Escherichia coli as a model for the multiple mutational origins of tumors. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5669–5673. doi: 10.1073/pnas.92.12.5669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Harding S. E. Applications of light scattering in microbiology. Biotechnol Appl Biochem. 1986 Dec;8(6):489–509. [PubMed] [Google Scholar]
  202. Harkins K. R., Galbraith D. W. Factors governing the flow cytometric analysis and sorting of large biological particles. Cytometry. 1987 Jan;8(1):60–70. doi: 10.1002/cyto.990080110. [DOI] [PubMed] [Google Scholar]
  203. Harris C. M., Kell D. B. The estimation of microbial biomass. Biosensors. 1985;1(1):17–84. doi: 10.1016/0265-928x(85)85005-7. [DOI] [PubMed] [Google Scholar]
  204. Haugen E. M., Cucci T. L., Yentsch C. M., Shapiro L. P. Effects of flow cytometric analysis on morphology and viability of fragile phytoplankton. Appl Environ Microbiol. 1987 Nov;53(11):2677–2679. doi: 10.1128/aem.53.11.2677-2679.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Haugland R. P. Spectra of fluorescent dyes used in flow cytometry. Methods Cell Biol. 1994;42(Pt B):641–663. doi: 10.1016/s0091-679x(08)61100-0. [DOI] [PubMed] [Google Scholar]
  206. Hedley D. W. DNA analysis from paraffin-embedded blocks. Methods Cell Biol. 1990;33:139–147. doi: 10.1016/s0091-679x(08)60520-8. [DOI] [PubMed] [Google Scholar]
  207. Heim R., Prasher D. C., Tsien R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12501–12504. doi: 10.1073/pnas.91.26.12501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Hejtmánek M., Dolezel J., Holubová I. Staining of fungal cell walls with fluorescent brighteners: flow-cytometric analysis. Folia Microbiol (Praha) 1990;35(5):437–442. doi: 10.1007/BF02821413. [DOI] [PubMed] [Google Scholar]
  209. Henderson L. M., Chappell J. B. Dihydrorhodamine 123: a fluorescent probe for superoxide generation? Eur J Biochem. 1993 Nov 1;217(3):973–980. doi: 10.1111/j.1432-1033.1993.tb18328.x. [DOI] [PubMed] [Google Scholar]
  210. Hensing M. C., Rouwenhorst R. J., Heijnen J. J., van Dijken J. P., Pronk J. T. Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie Van Leeuwenhoek. 1995;67(3):261–279. doi: 10.1007/BF00873690. [DOI] [PubMed] [Google Scholar]
  211. Hicks R. E., Amann R. I., Stahl D. A. Dual staining of natural bacterioplankton with 4',6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol. 1992 Jul;58(7):2158–2163. doi: 10.1128/aem.58.7.2158-2163.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Hitchens G. D., Kell D. B. Localized energy coupling during photophosphorylation by chromatophores of Rhodopseudomonas capsulata N22. Biosci Rep. 1982 Oct;2(10):743–749. doi: 10.1007/BF01114933. [DOI] [PubMed] [Google Scholar]
  213. Hitchens G. D., Kell D. B. On the effects of thiocyanate and venturicidin on respiration-driven proton translocation in Paracoccus denitrificans. Biochim Biophys Acta. 1984 Jul 27;766(1):222–232. doi: 10.1016/0005-2728(84)90235-4. [DOI] [PubMed] [Google Scholar]
  214. Hitchens G. D., Kell D. B. Uncouplers can shuttle between localized energy-coupling sites during photophosphorylation by chromatophores of Rhodopseudomonas capsulata N22. Biochem J. 1983 Apr 15;212(1):25–30. doi: 10.1042/bj2120025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Hoch J. A. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol. 1993;47:441–465. doi: 10.1146/annurev.mi.47.100193.002301. [DOI] [PubMed] [Google Scholar]
  216. Hopwood D. A., Malpartida F., Kieser H. M., Ikeda H., Duncan J., Fujii I., Rudd B. A., Floss H. G., Omura S. Production of 'hybrid' antibiotics by genetic engineering. Nature. 1985 Apr 18;314(6012):642–644. doi: 10.1038/314642a0. [DOI] [PubMed] [Google Scholar]
  217. Houben G. M., Stockbrügger R. W. Bacteria in the aetio-pathogenesis of gastric cancer: a review. Scand J Gastroenterol Suppl. 1995;212:13–18. doi: 10.3109/00365529509090296. [DOI] [PubMed] [Google Scholar]
  218. Huang C. T., Yu F. P., McFeters G. A., Stewart P. S. Nonuniform spatial patterns of respiratory activity within biofilms during disinfection. Appl Environ Microbiol. 1995 Jun;61(6):2252–2256. doi: 10.1128/aem.61.6.2252-2256.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Hugenholtz P., Pace N. R. Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol. 1996 Jun;14(6):190–197. doi: 10.1016/0167-7799(96)10025-1. [DOI] [PubMed] [Google Scholar]
  220. Humphreys M. J., Allman R., Lloyd D. Determination of the viability of Trichomonas vaginalis using flow cytometry. Cytometry. 1994 Apr 1;15(4):343–348. doi: 10.1002/cyto.990150410. [DOI] [PubMed] [Google Scholar]
  221. Hutter K. J., Eipel H. E. Flow cytometric determinations of cellular substances in algae, bacteria, moulds and yeasts. Antonie Van Leeuwenhoek. 1978;44(3-4):269–282. doi: 10.1007/BF00394305. [DOI] [PubMed] [Google Scholar]
  222. Hutter K. J., Eipel H. E. Microbial determinations by flow cytometry. J Gen Microbiol. 1979 Aug;113(2):369–375. doi: 10.1099/00221287-113-2-369. [DOI] [PubMed] [Google Scholar]
  223. Héchard Y., Jayat C., Letellier F., Julien R., Cenatiempo Y., Ratinaud M. H. On-line visualization of the competitive behavior of antagonistic bacteria. Appl Environ Microbiol. 1992 Nov;58(11):3784–3786. doi: 10.1128/aem.58.11.3784-3786.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Ikeda M., Katsumata R. Metabolic Engineering To Produce Tyrosine or Phenylalanine in a Tryptophan-Producing Corynebacterium glutamicum Strain. Appl Environ Microbiol. 1992 Mar;58(3):781–785. doi: 10.1128/aem.58.3.781-785.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Imai T., Ohno T. Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase. J Biotechnol. 1995 Jan 15;38(2):165–172. doi: 10.1016/0168-1656(94)00130-5. [DOI] [PubMed] [Google Scholar]
  226. Imai T., Ohno T. The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 1995 Oct;61(10):3604–3608. doi: 10.1128/aem.61.10.3604-3608.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Ingram M., Cleary T. J., Price B. J., Price R. L., 3rd, Castro A. Rapid detection of Legionella pneumophila by flow cytometry. Cytometry. 1982 Sep;3(2):134–137. doi: 10.1002/cyto.990030212. [DOI] [PubMed] [Google Scholar]
  228. Iwagaki H., Fuchimoto S., Miyake M., Oirta K. Increased mitochondrial uptake of rhodamine 123 during interferon-gamma stimulation in Molt 16 cells. Lymphokine Res. 1990 Fall;9(3):365–369. [PubMed] [Google Scholar]
  229. Janda K. D. Tagged versus untagged libraries: methods for the generation and screening of combinatorial chemical libraries. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10779–10785. doi: 10.1073/pnas.91.23.10779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Jaroszeski M. J., Gilbert R., Heller R. Detection and quantitation of cell-cell electrofusion products by flow cytometry. Anal Biochem. 1994 Feb 1;216(2):271–275. doi: 10.1006/abio.1994.1041. [DOI] [PubMed] [Google Scholar]
  231. Jasin M., Zalamea P. Analysis of Escherichia coli beta-galactosidase expression in transgenic mice by flow cytometry of sperm. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10681–10685. doi: 10.1073/pnas.89.22.10681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Jazwinski S. M. The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica. 1993;91(1-3):35–51. doi: 10.1007/BF01435986. [DOI] [PubMed] [Google Scholar]
  233. Jensen R. B., Gerdes K. Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol Microbiol. 1995 Jul;17(2):205–210. doi: 10.1111/j.1365-2958.1995.mmi_17020205.x. [DOI] [PubMed] [Google Scholar]
  234. Jepras R. I., Carter J., Pearson S. C., Paul F. E., Wilkinson M. J. Development of a robust flow cytometric assay for determining numbers of viable bacteria. Appl Environ Microbiol. 1995 Jul;61(7):2696–2701. doi: 10.1128/aem.61.7.2696-2701.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Jernaes M. W., Steen H. B. Staining of Escherichia coli for flow cytometry: influx and efflux of ethidium bromide. Cytometry. 1994 Dec 1;17(4):302–309. doi: 10.1002/cyto.990170405. [DOI] [PubMed] [Google Scholar]
  236. Jespersen L., Lassen S., Jakobsen M. Flow cytometric detection of wild yeast in lager breweries. Int J Food Microbiol. 1993 Feb;17(4):321–328. doi: 10.1016/0168-1605(93)90202-r. [DOI] [PubMed] [Google Scholar]
  237. Jetten M. S., Follettie M. T., Sinskey A. J. Metabolic engineering of Corynebacterium glutamicum. Ann N Y Acad Sci. 1994 May 2;721:12–29. doi: 10.1111/j.1749-6632.1994.tb47373.x. [DOI] [PubMed] [Google Scholar]
  238. Johnson C. H., Inoué S., Flint A., Hastings J. W. Compartmentalization of algal bioluminescence: autofluorescence of bioluminescent particles in the dinoflagellate Gonyaulax as studied with image-intensified video microscopy and flow cytometry. J Cell Biol. 1985 May;100(5):1435–1446. doi: 10.1083/jcb.100.5.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Johnson L. V., Walsh M. L., Chen L. B. Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A. 1980 Feb;77(2):990–994. doi: 10.1073/pnas.77.2.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Jones R. P. Roles for replicative deactivation in yeast-ethanol fermentations. Crit Rev Biotechnol. 1990;10(3):205–222. doi: 10.3109/07388559009038208. [DOI] [PubMed] [Google Scholar]
  241. Jung T., Schauer U., Heusser C., Neumann C., Rieger C. Detection of intracellular cytokines by flow cytometry. J Immunol Methods. 1993 Feb 26;159(1-2):197–207. doi: 10.1016/0022-1759(93)90158-4. [DOI] [PubMed] [Google Scholar]
  242. KEILIN D. The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B Biol Sci. 1959 Mar 17;150(939):149–191. doi: 10.1098/rspb.1959.0013. [DOI] [PubMed] [Google Scholar]
  243. KOCH A. L. Some calculations on the turbidity of mitochondria and bacteria. Biochim Biophys Acta. 1961 Aug 19;51:429–441. doi: 10.1016/0006-3002(61)90599-6. [DOI] [PubMed] [Google Scholar]
  244. Kachel V., Messerschmidt R., Hummel P. Eight-parameter PC-AT based flow cytometric data system. Cytometry. 1990;11(7):805–812. doi: 10.1002/cyto.990110706. [DOI] [PubMed] [Google Scholar]
  245. Kaiser D., Losick R. How and why bacteria talk to each other. Cell. 1993 Jun 4;73(5):873–885. doi: 10.1016/0092-8674(93)90268-u. [DOI] [PubMed] [Google Scholar]
  246. Kamentsky L. A., Melamed M. R., Derman H. Spectrophotometer: new instrument for ultrarapid cell analysis. Science. 1965 Oct 29;150(3696):630–631. doi: 10.1126/science.150.3696.630. [DOI] [PubMed] [Google Scholar]
  247. Kamp F., Welch G. R., Westerhoff H. V. Energy coupling and Hill cycles in enzymatic processes. Cell Biophys. 1988 Jan-Jun;12:201–236. doi: 10.1007/BF02918359. [DOI] [PubMed] [Google Scholar]
  248. Kaprelyants A. S., Gottschal J. C., Kell D. B. Dormancy in non-sporulating bacteria. FEMS Microbiol Rev. 1993 Apr;10(3-4):271–285. doi: 10.1111/j.1574-6968.1993.tb05871.x. [DOI] [PubMed] [Google Scholar]
  249. Kaprelyants A. S., Kell D. B. Do bacteria need to communicate with each other for growth? Trends Microbiol. 1996 Jun;4(6):237–242. doi: 10.1016/0966-842X(96)10035-4. [DOI] [PubMed] [Google Scholar]
  250. Kaprelyants A. S., Kell D. B. Dormancy in Stationary-Phase Cultures of Micrococcus luteus: Flow Cytometric Analysis of Starvation and Resuscitation. Appl Environ Microbiol. 1993 Oct;59(10):3187–3196. doi: 10.1128/aem.59.10.3187-3196.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Kaprelyants A. S., Mukamolova G. V., Davey H. M., Kell D. B. Quantitative Analysis of the Physiological Heterogeneity within Starved Cultures of Micrococcus luteus by Flow Cytometry and Cell Sorting. Appl Environ Microbiol. 1996 Apr;62(4):1311–1316. doi: 10.1128/aem.62.4.1311-1316.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Keij J. F., Groenewegen A. C., Dubelaar G. B., Visser J. W. High-speed photodamage cell selection using a frequency-doubled argon ion laser. Cytometry. 1995 Mar 1;19(3):209–216. doi: 10.1002/cyto.990190304. [DOI] [PubMed] [Google Scholar]
  253. Keij J. F., Groenewegen A. C., Visser J. W. High-speed photodamage cell sorting: an evaluation of the ZAPPER prototype. Methods Cell Biol. 1994;42(Pt B):371–386. doi: 10.1016/s0091-679x(08)61085-7. [DOI] [PubMed] [Google Scholar]
  254. Keilmann F., Böhme D., Santo L. Multichannel photometer-nephelometer. Appl Environ Microbiol. 1980 Sep;40(3):458–461. doi: 10.1128/aem.40.3.458-461.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Kell D. B., John P., Ferguson S. J. On the current-voltage relationships of energy-transducing membranes: phosphorylating membrane vesicles from Paracoccus denitrificans [proceedings]. Biochem Soc Trans. 1978;6(6):1292–1295. doi: 10.1042/bst0061292. [DOI] [PubMed] [Google Scholar]
  256. Kell D. B., John P., Sorgato M. C., Ferguson S. J. Continuous monitoring of the electrical potential across energy-transducing membranes using ion-selective electrodes. Application to submitochondrial particles and chromatophores. FEBS Lett. 1978 Feb 15;86(2):294–298. doi: 10.1016/0014-5793(78)80583-3. [DOI] [PubMed] [Google Scholar]
  257. Kell D. B., Ryder H. M., Kaprelyants A. S., Westerhoff H. V. Quantifying heterogeneity: flow cytometry of bacterial cultures. Antonie Van Leeuwenhoek. 1991 Oct-Nov;60(3-4):145–158. doi: 10.1007/BF00430362. [DOI] [PubMed] [Google Scholar]
  258. Kell D. B. The protonmotive force as an intermediate in electron transport-linked phosphorylation: problems and prospects. Curr Top Cell Regul. 1992;33:279–289. doi: 10.1016/b978-0-12-152833-1.50021-6. [DOI] [PubMed] [Google Scholar]
  259. Keller E. F. Between language and science: the question of directed mutation in molecular genetics. Perspect Biol Med. 1992 Winter;35(2):292–306. doi: 10.1353/pbm.1992.0000. [DOI] [PubMed] [Google Scholar]
  260. Kennedy B. K., Austriaco N. R., Jr, Guarente L. Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol. 1994 Dec;127(6 Pt 2):1985–1993. doi: 10.1083/jcb.127.6.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Kennedy B. K., Austriaco N. R., Jr, Zhang J., Guarente L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell. 1995 Feb 10;80(3):485–496. doi: 10.1016/0092-8674(95)90499-9. [DOI] [PubMed] [Google Scholar]
  262. Kerker M. Elastic and inelastic light scattering in flow cytometry. Cytometry. 1983 Jul;4(1):1–10. doi: 10.1002/cyto.990040102. [DOI] [PubMed] [Google Scholar]
  263. Khetan A., Malmberg L. H., Sherman D. H., Hu W. S. Metabolic engineering of cephalosporin biosynthesis in Streptomyces clavuligerus. Ann N Y Acad Sci. 1996 May 15;782:17–24. doi: 10.1111/j.1749-6632.1996.tb40543.x. [DOI] [PubMed] [Google Scholar]
  264. Kilbey B. J., Zetterberg L. G. Mutagenicity assays on fluorescent whitening agents using microorganisms. Environ Qual Saf Suppl. 1975;4:264–277. [PubMed] [Google Scholar]
  265. Kitagawa M., Higashi H., Takahashi I. S., Okabe T., Ogino H., Taya Y., Hishimura S., Okuyama A. A cyclin-dependent kinase inhibitor, butyrolactone I, inhibits phosphorylation of RB protein and cell cycle progression. Oncogene. 1994 Sep;9(9):2549–2557. [PubMed] [Google Scholar]
  266. Kjelleberg S., Hermansson M., Mårdén P., Jones G. W. The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annu Rev Microbiol. 1987;41:25–49. doi: 10.1146/annurev.mi.41.100187.000325. [DOI] [PubMed] [Google Scholar]
  267. Koch A. L. Biomass growth rate during the prokaryote cell cycle. Crit Rev Microbiol. 1993;19(1):17–42. doi: 10.3109/10408419309113521. [DOI] [PubMed] [Google Scholar]
  268. Koch A. L. Theory of the angular dependence of light scattered by bacteria and similar-sized biological objects. J Theor Biol. 1968 Jan;18(1):133–156. doi: 10.1016/0022-5193(68)90174-4. [DOI] [PubMed] [Google Scholar]
  269. Kogoma T., Skarstad K., Boye E., von Meyenburg K., Steen H. B. RecA protein acts at the initiation of stable DNA replication in rnh mutants of Escherichia coli K-12. J Bacteriol. 1985 Aug;163(2):439–444. doi: 10.1128/jb.163.2.439-444.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Koning A. J., Lum P. Y., Williams J. M., Wright R. DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil Cytoskeleton. 1993;25(2):111–128. doi: 10.1002/cm.970250202. [DOI] [PubMed] [Google Scholar]
  271. Kosugi Y., Ikebe J., Shitara N., Takakura K. Graphical presentation of multidimensional flow histogram using hexagonal segmentation. Cytometry. 1986 May;7(3):291–294. doi: 10.1002/cyto.990070311. [DOI] [PubMed] [Google Scholar]
  272. Kosugi Y., Sato R., Genka S., Shitara N., Takakura K. An interactive multivariate analysis of FCM data. Cytometry. 1988 Jul;9(4):405–408. doi: 10.1002/cyto.990090419. [DOI] [PubMed] [Google Scholar]
  273. Koutsoukos A. D., Rubinstein L. V., Faraggi D., Simon R. M., Kalyandrug S., Weinstein J. N., Kohn K. W., Paull K. D. Discrimination techniques applied to the NCI in vitro anti-tumour drug screen: predicting biochemical mechanism of action. 1994 Mar 15-Apr 15Stat Med. 13(5-7):719–730. doi: 10.1002/sim.4780130532. [DOI] [PubMed] [Google Scholar]
  274. Kremer L., Baulard A., Estaquier J., Poulain-Godefroy O., Locht C. Green fluorescent protein as a new expression marker in mycobacteria. Mol Microbiol. 1995 Sep;17(5):913–922. doi: 10.1111/j.1365-2958.1995.mmi_17050913.x. [DOI] [PubMed] [Google Scholar]
  275. Kruth H. S. Flow cytometry: rapid biochemical analysis of single cells. Anal Biochem. 1982 Sep 15;125(2):225–242. doi: 10.1016/0003-2697(82)90001-x. [DOI] [PubMed] [Google Scholar]
  276. Kubitschek H. E., Pai S. R. Variation in precursor pool size during the division cycle of Escherichia coli: further evidence for linear cell growth. J Bacteriol. 1988 Jan;170(1):431–435. doi: 10.1128/jb.170.1.431-435.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Kurland C. G., Ehrenberg M. Growth-optimizing accuracy of gene expression. Annu Rev Biophys Biophys Chem. 1987;16:291–317. doi: 10.1146/annurev.bb.16.060187.001451. [DOI] [PubMed] [Google Scholar]
  278. Langer E. M. Nachweis der Aktivität der Succinatdehydrogenase in Ascites-Tumor-zellen mit fluoreszierenden Tetrazoliumsalzen. Acta Histochem. 1985;76(1):23–28. [PubMed] [Google Scholar]
  279. Langlois R. G., Jensen R. H. Interactions between pairs of DNA-specific fluorescent stains bound to mammalian cells. J Histochem Cytochem. 1979 Jan;27(1):72–79. doi: 10.1177/27.1.86583. [DOI] [PubMed] [Google Scholar]
  280. Lapinsky S. E., Glencross D., Car N. G., Kallenbach J. M., Zwi S. Quantification and assessment of viability of Pneumocystis carinii organisms by flow cytometry. J Clin Microbiol. 1991 May;29(5):911–915. doi: 10.1128/jcm.29.5.911-915.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Laplace-Builhé C., Hahne K., Hunger W., Tirilly Y., Drocourt J. L. Application of flow cytometry to rapid microbial analysis in food and drinks industries. Biol Cell. 1993;78(1-2):123–128. doi: 10.1016/0248-4900(93)90122-u. [DOI] [PubMed] [Google Scholar]
  282. Larrick J. W., Balint R. F., Youvan D. C. Green fluorescent protein: untapped potential in immunotechnology. Immunotechnology. 1995 Aug;1(2):83–86. doi: 10.1016/1380-2933(95)00011-9. [DOI] [PubMed] [Google Scholar]
  283. Latimer P. Light scattering and absorption as methods of studying cell population parameters. Annu Rev Biophys Bioeng. 1982;11:129–150. doi: 10.1146/annurev.bb.11.060182.001021. [DOI] [PubMed] [Google Scholar]
  284. Legendre L., Yentsch C. M. Overview of flow cytometry and image analysis in biological oceanography and limnology. Cytometry. 1989 Sep;10(5):501–510. doi: 10.1002/cyto.990100505. [DOI] [PubMed] [Google Scholar]
  285. Leive L. Release of lipopolysaccharide by EDTA treatment of E. coli. Biochem Biophys Res Commun. 1965 Nov 22;21(4):290–296. doi: 10.1016/0006-291x(65)90191-9. [DOI] [PubMed] [Google Scholar]
  286. Lenski R. E., Mittler J. E. The directed mutation controversy and neo-Darwinism. Science. 1993 Jan 8;259(5092):188–194. doi: 10.1126/science.7678468. [DOI] [PubMed] [Google Scholar]
  287. Levitt D., King M. Methanol fixation permits flow cytometric analysis of immunofluorescent stained intracellular antigens. J Immunol Methods. 1987 Feb 11;96(2):233–237. doi: 10.1016/0022-1759(87)90319-x. [DOI] [PubMed] [Google Scholar]
  288. Lewis K. Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem Sci. 1994 Mar;19(3):119–123. doi: 10.1016/0968-0004(94)90204-6. [DOI] [PubMed] [Google Scholar]
  289. Lewis P. J., Nwoguh C. E., Barer M. R., Harwood C. R., Errington J. Use of digitized video microscopy with a fluorogenic enzyme substrate to demonstrate cell- and compartment-specific gene expression in Salmonella enteritidis and Bacillus subtilis. Mol Microbiol. 1994 Aug;13(4):655–662. doi: 10.1111/j.1365-2958.1994.tb00459.x. [DOI] [PubMed] [Google Scholar]
  290. Li J. K., Asali E. C., Humphrey A. E., Horvath J. J. Monitoring cell concentration and activity by multiple excitation fluorometry. Biotechnol Prog. 1991 Jan-Feb;7(1):21–27. doi: 10.1021/bp00007a004. [DOI] [PubMed] [Google Scholar]
  291. Lim C. R., Kimata Y., Oka M., Nomaguchi K., Kohno K. Thermosensitivity of green fluorescent protein fluorescence utilized to reveal novel nuclear-like compartments in a mutant nucleoporin NSP1. J Biochem. 1995 Jul;118(1):13–17. doi: 10.1093/oxfordjournals.jbchem.a124868. [DOI] [PubMed] [Google Scholar]
  292. Lipshutz R. J., Morris D., Chee M., Hubbell E., Kozal M. J., Shah N., Shen N., Yang R., Fodor S. P. Using oligonucleotide probe arrays to access genetic diversity. Biotechniques. 1995 Sep;19(3):442–447. [PubMed] [Google Scholar]
  293. Lizard G., Chardonnet Y., Chignol M. C., Thivolet J. Evaluation of mitochondrial content and activity with nonyl-acridine orange and rhodamine 123: flow cytometric analysis and comparison with quantitative morphometry. Comparative analysis by flow cytometry and quantitative morphometry of mitochondrial content and activity. Cytotechnology. 1990 Mar;3(2):179–188. doi: 10.1007/BF00143680. [DOI] [PubMed] [Google Scholar]
  294. Lloyd D., Stupfel M. The occurrence and functions of ultradian rhythms. Biol Rev Camb Philos Soc. 1991 Aug;66(3):275–299. doi: 10.1111/j.1469-185x.1991.tb01143.x. [DOI] [PubMed] [Google Scholar]
  295. Locher G., Sonnleitner B., Fiechter A. On-line measurement in biotechnology: exploitation, objectives and benefits. J Biotechnol. 1992 Aug;25(1-2):55–73. doi: 10.1016/0168-1656(92)90109-m. [DOI] [PubMed] [Google Scholar]
  296. Locher G., Sonnleitner B., Fiechter A. On-line measurement in biotechnology: techniques. J Biotechnol. 1992 Aug;25(1-2):23–53. doi: 10.1016/0168-1656(92)90108-l. [DOI] [PubMed] [Google Scholar]
  297. Lorenz R. T., Casey W. M., Parks L. W. Structural discrimination in the sparking function of sterols in the yeast Saccharomyces cerevisiae. J Bacteriol. 1989 Nov;171(11):6169–6173. doi: 10.1128/jb.171.11.6169-6173.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Lowman H. B., Bass S. H., Simpson N., Wells J. A. Selecting high-affinity binding proteins by monovalent phage display. Biochemistry. 1991 Nov 12;30(45):10832–10838. doi: 10.1021/bi00109a004. [DOI] [PubMed] [Google Scholar]
  299. Lucretti S., Dolezel J. Cell cycle synchronization, chromosome isolation, and flow-sorting in plants. Methods Cell Biol. 1995;50:61–83. doi: 10.1016/s0091-679x(08)61023-7. [DOI] [PubMed] [Google Scholar]
  300. Lutton D. A., Patrick S., Crockard A. D., Stewart L. D., Larkin M. J., Dermott E., McNeill T. A. Flow cytometric analysis of within-strain variation in polysaccharide expression by Bacteroides fragilis by use of murine monoclonal antibodies. J Med Microbiol. 1991 Oct;35(4):229–237. doi: 10.1099/00222615-35-4-229. [DOI] [PubMed] [Google Scholar]
  301. Lynch D. A., Axon A. T. Helicobacter pylori, gastric cancer and gastric epithelial kinetics: a review. Eur J Gastroenterol Hepatol. 1995 Aug;7 (Suppl 1):S17–S23. [PubMed] [Google Scholar]
  302. López-Amorós R., Comas J., Vives-Rego J. Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation-survival in seawater using rhodamine 123, propidium iodide, and oxonol. Appl Environ Microbiol. 1995 Jul;61(7):2521–2526. doi: 10.1128/aem.61.7.2521-2526.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. MORTIMER R. K., JOHNSTON J. R. Life span of individual yeast cells. Nature. 1959 Jun 20;183(4677):1751–1752. doi: 10.1038/1831751a0. [DOI] [PubMed] [Google Scholar]
  304. Mac Kenzie W. R., Hoxie N. J., Proctor M. E., Gradus M. S., Blair K. A., Peterson D. E., Kazmierczak J. J., Addiss D. G., Fox K. R., Rose J. B. A massive outbreak in Milwaukee of cryptosporidium infection transmitted through the public water supply. N Engl J Med. 1994 Jul 21;331(3):161–167. doi: 10.1056/NEJM199407213310304. [DOI] [PubMed] [Google Scholar]
  305. MacKenzie W. R., Schell W. L., Blair K. A., Addiss D. G., Peterson D. E., Hoxie N. J., Kazmierczak J. J., Davis J. P. Massive outbreak of waterborne cryptosporidium infection in Milwaukee, Wisconsin: recurrence of illness and risk of secondary transmission. Clin Infect Dis. 1995 Jul;21(1):57–62. doi: 10.1093/clinids/21.1.57. [DOI] [PubMed] [Google Scholar]
  306. Maddox J. Towards more measurement in biology. Nature. 1994 Mar 10;368(6467):95–95. doi: 10.1038/368095a0. [DOI] [PubMed] [Google Scholar]
  307. Maftah A., Huet O., Gallet P. F., Ratinaud M. H. Flow cytometry's contribution to the measurement of cell functions. Biol Cell. 1993;78(1-2):85–93. doi: 10.1016/0248-4900(93)90119-y. [DOI] [PubMed] [Google Scholar]
  308. Magariños B., Romalde J. L., Barja J. L., Toranzo A. E. Evidence of a dormant but infective state of the fish pathogen Pasteurella piscicida in seawater and sediment. Appl Environ Microbiol. 1994 Jan;60(1):180–186. doi: 10.1128/aem.60.1.180-186.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  309. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. doi: 10.1093/nar/22.17.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  310. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. The Ribosomal Database Project (RDP). Nucleic Acids Res. 1996 Jan 1;24(1):82–85. doi: 10.1093/nar/24.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  311. Mansour J. D., Robson J. A., Arndt C. W., Schulte T. H. Detection of Escherichia coli in blood using flow cytometry. Cytometry. 1985 May;6(3):186–190. doi: 10.1002/cyto.990060303. [DOI] [PubMed] [Google Scholar]
  312. Manz R., Assenmacher M., Pflüger E., Miltenyi S., Radbruch A. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1921–1925. doi: 10.1073/pnas.92.6.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  313. Marie D., Vaulot D., Partensky F. Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine prokaryotes. Appl Environ Microbiol. 1996 May;62(5):1649–1655. doi: 10.1128/aem.62.5.1649-1655.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  314. Markus M., Kuschmitz D., Hess B. Properties of strange attractors in yeast glycolysis. Biophys Chem. 1985 Jun;22(1-2):95–105. doi: 10.1016/0301-4622(85)80030-2. [DOI] [PubMed] [Google Scholar]
  315. Marshall B. J., Warren J. R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984 Jun 16;1(8390):1311–1315. doi: 10.1016/s0140-6736(84)91816-6. [DOI] [PubMed] [Google Scholar]
  316. Martegani E., Brambilla L., Porro D., Ranzi B. M., Alberghina L. Alteration of cell population structure due to cell lysis in Saccharomyces cerevisiae cells overexpressing the GAL4 gene. Yeast. 1993 Jun;9(6):575–582. doi: 10.1002/yea.320090603. [DOI] [PubMed] [Google Scholar]
  317. Martin E., Bhakdi S. Flow cytometric assay for quantifying opsonophagocytosis and killing of Staphylococcus aureus by peripheral blood leukocytes. J Clin Microbiol. 1992 Sep;30(9):2246–2255. doi: 10.1128/jcm.30.9.2246-2255.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Martin E., Bhakdi S. Quantitative analysis of opsonophagocytosis and of killing of Candida albicans by human peripheral blood leukocytes by using flow cytometry. J Clin Microbiol. 1991 Sep;29(9):2013–2023. doi: 10.1128/jcm.29.9.2013-2023.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  319. Martin E., Schlasius U., Bhakdi S. Flow cytometric assay for estimating fungicidal activity of amphotericin B in human serum. Med Microbiol Immunol. 1992;181(3):117–126. doi: 10.1007/BF00202051. [DOI] [PubMed] [Google Scholar]
  320. Martinez O. V., Gratzner H. G., Malinin T. I., Ingram M. The effect of some beta-lactam antibiotics on Escherichia coli studied by flow cytometry. Cytometry. 1982 Sep;3(2):129–133. doi: 10.1002/cyto.990030211. [DOI] [PubMed] [Google Scholar]
  321. Mason D. J., Allman R., Stark J. M., Lloyd D. Rapid estimation of bacterial antibiotic susceptibility with flow cytometry. J Microsc. 1994 Oct;176(Pt 1):8–16. doi: 10.1111/j.1365-2818.1994.tb03494.x. [DOI] [PubMed] [Google Scholar]
  322. Mason D. J., Gant V. A. The application of flow cytometry to the estimation of bacterial antibiotic susceptibility. J Antimicrob Chemother. 1995 Aug;36(2):441–443. doi: 10.1093/jac/36.2.441. [DOI] [PubMed] [Google Scholar]
  323. Mason D. J., Lopéz-Amorós R., Allman R., Stark J. M., Lloyd D. The ability of membrane potential dyes and calcafluor white to distinguish between viable and non-viable bacteria. J Appl Bacteriol. 1995 Mar;78(3):309–315. doi: 10.1111/j.1365-2672.1995.tb05031.x. [DOI] [PubMed] [Google Scholar]
  324. Mason D. J., Power E. G., Talsania H., Phillips I., Gant V. A. Antibacterial action of ciprofloxacin. Antimicrob Agents Chemother. 1995 Dec;39(12):2752–2758. doi: 10.1128/aac.39.12.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  325. Matin A., Auger E. A., Blum P. H., Schultz J. E. Genetic basis of starvation survival in nondifferentiating bacteria. Annu Rev Microbiol. 1989;43:293–316. doi: 10.1146/annurev.mi.43.100189.001453. [DOI] [PubMed] [Google Scholar]
  326. Maurer D., Felzmann T., Knapp W. A single laser flow cytometry method to evaluate the binding of three antibodies. J Immunol Methods. 1990 Dec 31;135(1-2):43–47. doi: 10.1016/0022-1759(90)90254-s. [DOI] [PubMed] [Google Scholar]
  327. McCarthy J. E., Ferguson S. J., Kell D. B. Estimation with an ion-selective electrode of the membrane potential in cells of Paracoccus denitrificans from the uptake of the butyltriphenylphosphonium cation during aerobic and anaerobic respiration. Biochem J. 1981 Apr 15;196(1):311–321. doi: 10.1042/bj1960311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  328. McClelland R. G., Pinder A. C. Detection of Salmonella typhimurium in dairy products with flow cytometry and monoclonal antibodies. Appl Environ Microbiol. 1994 Dec;60(12):4255–4262. doi: 10.1128/aem.60.12.4255-4262.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  329. McClelland R. G., Pinder A. C. Detection of low levels of specific Salmonella species by fluorescent antibodies and flow cytometry. J Appl Bacteriol. 1994 Oct;77(4):440–447. doi: 10.1111/j.1365-2672.1994.tb03447.x. [DOI] [PubMed] [Google Scholar]
  330. McFeters G. A., Singh A., Byun S., Callis P. R., Williams S. Acridine orange staining reaction as an index of physiological activity in Escherichia coli. J Microbiol Methods. 1991;13:87–97. doi: 10.1016/0167-7012(91)90009-f. [DOI] [PubMed] [Google Scholar]
  331. McFeters G. A., Yu F. P., Pyle B. H., Stewart P. S. Physiological assessment of bacteria using fluorochromes. J Microbiol Methods. 1995 Jan;21(1):1–13. doi: 10.1016/0167-7012(94)00027-5. [DOI] [PubMed] [Google Scholar]
  332. Mendelson N. H. Bacterial growth and division: genes, structures, forces, and clocks. Microbiol Rev. 1982 Sep;46(3):341–375. doi: 10.1128/mr.46.3.341-375.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  333. Mendoza-Vega O., Sabatié J., Brown S. W. Industrial production of heterologous proteins by fed-batch cultures of the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 1994 Dec;15(4):369–410. doi: 10.1111/j.1574-6976.1994.tb00146.x. [DOI] [PubMed] [Google Scholar]
  334. Miller J. S., Quarles J. M. Flow cytometric identification of microorganisms by dual staining with FITC and PI. Cytometry. 1990;11(6):667–675. doi: 10.1002/cyto.990110603. [DOI] [PubMed] [Google Scholar]
  335. Miltenyi S., Müller W., Weichel W., Radbruch A. High gradient magnetic cell separation with MACS. Cytometry. 1990;11(2):231–238. doi: 10.1002/cyto.990110203. [DOI] [PubMed] [Google Scholar]
  336. Minas W., Sahar E., Gutnick D. Flow cytometric screening and isolation of Escherichia coli clones which express surface antigens of the oil-degrading microorganism Acinetobacter calcoaceticus RAG-1. Arch Microbiol. 1988;150(5):432–437. doi: 10.1007/BF00422282. [DOI] [PubMed] [Google Scholar]
  337. Mitsumoto Y., Mohri T. Dual-fluorescence flow cytometric analysis of membrane potential and cytoplasmic free Ca2+ concentration in embryonic rat hippocampal cells. Cell Struct Funct. 1989 Dec;14(6):669–672. doi: 10.1247/csf.14.669. [DOI] [PubMed] [Google Scholar]
  338. Moldavan A. PHOTO-ELECTRIC TECHNIQUE FOR THE COUNTING OF MICROSCOPICAL CELLS. Science. 1934 Aug 24;80(2069):188–189. doi: 10.1126/science.80.2069.188. [DOI] [PubMed] [Google Scholar]
  339. Molenaar D., Bolhuis H., Abee T., Poolman B., Konings W. N. The efflux of a fluorescent probe is catalyzed by an ATP-driven extrusion system in Lactococcus lactis. J Bacteriol. 1992 May;174(10):3118–3124. doi: 10.1128/jb.174.10.3118-3124.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  340. Monfort P., Baleux B. Comparison of flow cytometry and epifluorescence microscopy for counting bacteria in aquatic ecosystems. Cytometry. 1992;13(2):188–192. doi: 10.1002/cyto.990130213. [DOI] [PubMed] [Google Scholar]
  341. Monfort P., Baleux B. Effects of environmental factors present in the St. Lawrence Estuary (Quebec, Canada) on experimental survival of Salmonella salamae as determined by flow cytometry. Can J Microbiol. 1994 Sep;40(9):712–719. doi: 10.1139/m94-113. [DOI] [PubMed] [Google Scholar]
  342. Monger B. C., Landry M. R. Flow cytometric analysis of marine bacteria with hoechst 33342. Appl Environ Microbiol. 1993 Mar;59(3):905–911. doi: 10.1128/aem.59.3.905-911.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  343. Montague G., Morris J. Neural-network contributions in biotechnology. Trends Biotechnol. 1994 Aug;12(8):312–324. doi: 10.1016/0167-7799(94)90048-5. [DOI] [PubMed] [Google Scholar]
  344. Mukamolova G. V., Kaprelyants A. S., Kell D. B. Secretion of an antibacterial factor during resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase. Antonie Van Leeuwenhoek. 1995;67(3):289–295. doi: 10.1007/BF00873692. [DOI] [PubMed] [Google Scholar]
  345. Mullaney P. F., Dean P. N. The small angle light scattering of biological cells. Theoretical considerations. Biophys J. 1970 Aug;10(8):764–772. doi: 10.1016/S0006-3495(70)86334-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  346. Muller E. G. A redox-dependent function of thioredoxin is necessary to sustain a rapid rate of DNA synthesis in yeast. Arch Biochem Biophys. 1995 Apr 20;318(2):356–361. doi: 10.1006/abbi.1995.1240. [DOI] [PubMed] [Google Scholar]
  347. Murdock D., Ensley B. D., Serdar C., Thalen M. Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli. Biotechnology (N Y) 1993 Mar;11(3):381–386. doi: 10.1038/nbt0393-381. [DOI] [PubMed] [Google Scholar]
  348. Murray B. E. New aspects of antimicrobial resistance and the resulting therapeutic dilemmas. J Infect Dis. 1991 Jun;163(6):1184–1194. [PubMed] [Google Scholar]
  349. Musser J. M. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev. 1995 Oct;8(4):496–514. doi: 10.1128/cmr.8.4.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  350. Müller K., Gombert F. O., Manning U., Grossmüller F., Graff P., Zaegel H., Zuber J. F., Freuler F., Tschopp C., Baumann G. Rapid identification of phosphopeptide ligands for SH2 domains. Screening of peptide libraries by fluorescence-activated bead sorting. J Biol Chem. 1996 Jul 12;271(28):16500–16505. [PubMed] [Google Scholar]
  351. Münch T., Sonnleitner B., Fiechter A. The decisive role of the Saccharomyces cerevisiae cell cycle behaviour for dynamic growth characterization. J Biotechnol. 1992 Feb;22(3):329–351. doi: 10.1016/0168-1656(92)90150-8. [DOI] [PubMed] [Google Scholar]
  352. Needels M. C., Jones D. G., Tate E. H., Heinkel G. L., Kochersperger L. M., Dower W. J., Barrett R. W., Gallop M. A. Generation and screening of an oligonucleotide-encoded synthetic peptide library. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10700–10704. doi: 10.1073/pnas.90.22.10700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  353. Neff M. W., Burke D. J. A delay in the Saccharomyces cerevisiae cell cycle that is induced by a dicentric chromosome and dependent upon mitotic checkpoints. Mol Cell Biol. 1992 Sep;12(9):3857–3864. doi: 10.1128/mcb.12.9.3857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  354. Neijssel O. M., Tempest D. W. The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture. Arch Microbiol. 1976 Nov 2;110(23):305–311. doi: 10.1007/BF00690243. [DOI] [PubMed] [Google Scholar]
  355. Nelson N. A novel method for the detection of receptors and membrane proteins by scintillation proximity radioassay. Anal Biochem. 1987 Sep;165(2):287–293. doi: 10.1016/0003-2697(87)90271-5. [DOI] [PubMed] [Google Scholar]
  356. Nguyen B. T., Lazzari K., Abebe J., Mac I., Lin J. B., Chang A., Wydner K. L., Lawrence J. B., Cram L. S., Weier H. U. In situ hybridization to chromosomes stabilized in gel microdrops. Cytometry. 1995 Oct 1;21(2):111–119. doi: 10.1002/cyto.990210202. [DOI] [PubMed] [Google Scholar]
  357. Nichols J. E., Mock D. J., Roberts N. J., Jr Use of FITC-labeled influenza virus and flow cytometry to assess binding and internalization of virus by monocytes-macrophages and lymphocytes. Arch Virol. 1993;130(3-4):441–455. doi: 10.1007/BF01309672. [DOI] [PubMed] [Google Scholar]
  358. Nigro J. M., Sikorski R., Reed S. I., Vogelstein B. Human p53 and CDC2Hs genes combine to inhibit the proliferation of Saccharomyces cerevisiae. Mol Cell Biol. 1992 Mar;12(3):1357–1365. doi: 10.1128/mcb.12.3.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  359. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994 Apr 15;264(5157):382–388. doi: 10.1126/science.8153625. [DOI] [PubMed] [Google Scholar]
  360. Nilsson L., Oliver J. D., Kjelleberg S. Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J Bacteriol. 1991 Aug;173(16):5054–5059. doi: 10.1128/jb.173.16.5054-5059.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  361. Nir R., Yisraeli Y., Lamed R., Sahar E. Flow cytometry sorting of viable bacteria and yeasts according to beta-galactosidase activity. Appl Environ Microbiol. 1990 Dec;56(12):3861–3866. doi: 10.1128/aem.56.12.3861-3866.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  362. Nisbet L. J. Useful functions of microbial metabolites. Ciba Found Symp. 1992;171:215–235. doi: 10.1002/9780470514344.ch13. [DOI] [PubMed] [Google Scholar]
  363. Norden M. A., Kurzynski T. A., Bownds S. E., Callister S. M., Schell R. F. Rapid susceptibility testing of Mycobacterium tuberculosis (H37Ra) by flow cytometry. J Clin Microbiol. 1995 May;33(5):1231–1237. doi: 10.1128/jcm.33.5.1231-1237.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  364. Nwoguh C. E., Harwood C. R., Barer M. R. Detection of induced beta-galactosidase activity in individual non-culturable cells of pathogenic bacteria by quantitative cytological assay. Mol Microbiol. 1995 Aug;17(3):545–554. doi: 10.1111/j.1365-2958.1995.mmi_17030545.x. [DOI] [PubMed] [Google Scholar]
  365. O'Gorman M. R., Hopfer R. L. Amphotericin B susceptibility testing of Candida species by flow cytometry. Cytometry. 1991;12(8):743–747. doi: 10.1002/cyto.990120808. [DOI] [PubMed] [Google Scholar]
  366. O'Neil K. T., Hoess R. H. Phage display: protein engineering by directed evolution. Curr Opin Struct Biol. 1995 Aug;5(4):443–449. doi: 10.1016/0959-440x(95)80027-1. [DOI] [PubMed] [Google Scholar]
  367. Ochman H., Wilson A. C. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26(1-2):74–86. doi: 10.1007/BF02111283. [DOI] [PubMed] [Google Scholar]
  368. Odinsen O., Nilson T., Humber D. P. Viability of Mycobacterium leprae: a comparison of morphological index and fluorescent staining techniques in slit-skin smears and M. leprae suspensions. Int J Lepr Other Mycobact Dis. 1986 Sep;54(3):403–408. [PubMed] [Google Scholar]
  369. Oliver J. D., Bockian R. In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl Environ Microbiol. 1995 Jul;61(7):2620–2623. doi: 10.1128/aem.61.7.2620-2623.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  370. Oliver J. D., Hite F., McDougald D., Andon N. L., Simpson L. M. Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment. Appl Environ Microbiol. 1995 Jul;61(7):2624–2630. doi: 10.1128/aem.61.7.2624-2630.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  371. Oliver J. D. The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiol Lett. 1995 Nov 15;133(3):203–208. doi: 10.1111/j.1574-6968.1995.tb07885.x. [DOI] [PubMed] [Google Scholar]
  372. Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994 Jan;176(1):1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  373. Olson R. J., Zettler E. R., Anderson O. K. Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry. Cytometry. 1989 Sep;10(5):636–643. doi: 10.1002/cyto.990100520. [DOI] [PubMed] [Google Scholar]
  374. Oltz E. M., Pollack S., Delohery T., Smith M. J., Ojika M., Lee S., Kustin K., Nakanishi K. Distribution of tunichrome and vanadium in sea squirt blood cells sorted by flow cytometry. Experientia. 1989 Feb 15;45(2):186–190. doi: 10.1007/BF01954871. [DOI] [PubMed] [Google Scholar]
  375. Omura S. Philosophy of new drug discovery. Microbiol Rev. 1986 Sep;50(3):259–279. doi: 10.1128/mr.50.3.259-279.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  376. On S. L. Identification methods for campylobacters, helicobacters, and related organisms. Clin Microbiol Rev. 1996 Jul;9(3):405–422. doi: 10.1128/cmr.9.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  377. Ongkeko W., Ferguson D. J., Harris A. L., Norbury C. Inactivation of Cdc2 increases the level of apoptosis induced by DNA damage. J Cell Sci. 1995 Aug;108(Pt 8):2897–2904. doi: 10.1242/jcs.108.8.2897. [DOI] [PubMed] [Google Scholar]
  378. Ordóez J. V., Wehman N. M. Amphotericin B susceptibility of Candida species assessed by rapid flow cytometric membrane potential assay. Cytometry. 1995 Jun 15;22(2):154–157. doi: 10.1002/cyto.990220213. [DOI] [PubMed] [Google Scholar]
  379. Ordóez J. V., Wehman N. M. Rapid flow cytometric antibiotic susceptibility assay for Staphylococcus aureus. Cytometry. 1993 Oct;14(7):811–818. doi: 10.1002/cyto.990140714. [DOI] [PubMed] [Google Scholar]
  380. Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol. 1990;33:105–110. doi: 10.1016/s0091-679x(08)60516-6. [DOI] [PubMed] [Google Scholar]
  381. Paau A. S., Cowles J. R., Oro J. Flow-microfluorometric analysis of Escherichia coli, Rhizobium meliloti, and Rhizobium japonicum at different stages of the growth cycle. Can J Microbiol. 1977 Sep;23(9):1165–1169. doi: 10.1139/m77-175. [DOI] [PubMed] [Google Scholar]
  382. Parini C., Bacigalupo M. A., Colombi S., Corocher N., Baggiani C., Giraudi G. Fractionation of an antiserum to progesterone by affinity chromatography: effect of pH, solvents and biospecific adsorbents. Analyst. 1995 Apr;120(4):1153–1158. doi: 10.1039/an9952001153. [DOI] [PubMed] [Google Scholar]
  383. Parsonnet J. Helicobacter pylori and gastric cancer. Gastroenterol Clin North Am. 1993 Mar;22(1):89–104. [PubMed] [Google Scholar]
  384. Peeters J. C., Dubelaar G. B., Ringelberg J., Visser J. W. Optical plankton analyser: a flow cytometer for plankton analysis, I: Design considerations. Cytometry. 1989 Sep;10(5):522–528. doi: 10.1002/cyto.990100507. [DOI] [PubMed] [Google Scholar]
  385. Peters D. C. A comparison of mercury arc lamp and laser illumination for flow cytometers. J Histochem Cytochem. 1979 Jan;27(1):241–245. doi: 10.1177/27.1.374581. [DOI] [PubMed] [Google Scholar]
  386. Pethig R., Kell D. B. The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol. 1987 Aug;32(8):933–970. doi: 10.1088/0031-9155/32/8/001. [DOI] [PubMed] [Google Scholar]
  387. Petit J. M., Denis-Gay M., Ratinaud M. H. Assessment of fluorochromes for cellular structure and function studies by flow cytometry. Biol Cell. 1993;78(1-2):1–13. doi: 10.1016/0248-4900(93)90109-r. [DOI] [PubMed] [Google Scholar]
  388. Petit J. M., Maftah A., Ratinaud M. H., Julien R. 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur J Biochem. 1992 Oct 1;209(1):267–273. doi: 10.1111/j.1432-1033.1992.tb17285.x. [DOI] [PubMed] [Google Scholar]
  389. Petit P. X. Flow Cytometric Analysis of Rhodamine 123 Fluorescence during Modulation of the Membrane Potential in Plant Mitochondria. Plant Physiol. 1992 Jan;98(1):279–286. doi: 10.1104/pp.98.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  390. Petit P. X., Lecoeur H., Zorn E., Dauguet C., Mignotte B., Gougeon M. L. Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol. 1995 Jul;130(1):157–167. doi: 10.1083/jcb.130.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  391. Petit P. X., O'Connor J. E., Grunwald D., Brown S. C. Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Eur J Biochem. 1990 Dec 12;194(2):389–397. doi: 10.1111/j.1432-1033.1990.tb15632.x. [DOI] [PubMed] [Google Scholar]
  392. Petit P., Glab N., Marie D., Kieffer H., Métézeau P. Discrimination of respiratory dysfunction in yeast mutants by confocal microscopy, image, and flow cytometry. Cytometry. 1996 Jan 1;23(1):28–38. doi: 10.1002/(SICI)1097-0320(19960101)23:1<28::AID-CYTO5>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  393. Phillips A. P., Martin K. L., Broster M. G. Differentiation between spores of Bacillus anthracis and Bacillus cereus by a quantitative immunofluorescence technique. J Clin Microbiol. 1983 Jan;17(1):41–47. doi: 10.1128/jcm.17.1.41-47.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  394. Phillips A. P., Martin K. L. Dual-parameter scatter-flow immunofluorescence analysis of Bacillus spores. Cytometry. 1985 Mar;6(2):124–129. doi: 10.1002/cyto.990060207. [DOI] [PubMed] [Google Scholar]
  395. Phillips A. P., Martin K. L. Immunofluorescence analysis of bacillus spores and vegetative cells by flow cytometry. Cytometry. 1983 Sep;4(2):123–131. doi: 10.1002/cyto.990040205. [DOI] [PubMed] [Google Scholar]
  396. Phillips A. P., Martin K. L. Serum stimulation and repression of flow immunofluorescence staining of bacteria. J Immunol Methods. 1985 Nov 28;84(1-2):303–311. doi: 10.1016/0022-1759(85)90437-5. [DOI] [PubMed] [Google Scholar]
  397. Phillips M. K., Kell D. B. A novel inhibitor of NADH dehydrogenase in Paracoccus denitrificans. FEBS Lett. 1982 Apr 19;140(2):248–250. doi: 10.1016/0014-5793(82)80905-8. [DOI] [PubMed] [Google Scholar]
  398. Phillips M. K., Kell D. B., Rhodes-Roberts M. E. The antibacterial action of Tinopal AN. J Gen Microbiol. 1984 Aug;130(8):1999–2005. doi: 10.1099/00221287-130-8-1999. [DOI] [PubMed] [Google Scholar]
  399. Phinney D. A., Cucci T. L. Flow cytometry and phytoplankton. Cytometry. 1989 Sep;10(5):511–521. doi: 10.1002/cyto.990100506. [DOI] [PubMed] [Google Scholar]
  400. Piepersberg W. Pathway engineering in secondary metabolite-producing actinomycetes. Crit Rev Biotechnol. 1994;14(3):251–285. doi: 10.3109/07388554409079835. [DOI] [PubMed] [Google Scholar]
  401. Pinder A. C., McClelland R. G. Rapid assay for pathogenic Salmonella organisms by immunofluorescence flow cytometry. J Microsc. 1994 Oct;176(Pt 1):17–22. doi: 10.1111/j.1365-2818.1994.tb03495.x. [DOI] [PubMed] [Google Scholar]
  402. Pinder A. C., Purdy P. W., Poulter S. A., Clark D. C. Validation of flow cytometry for rapid enumeration of bacterial concentrations in pure cultures. J Appl Bacteriol. 1990 Jul;69(1):92–100. doi: 10.1111/j.1365-2672.1990.tb02916.x. [DOI] [PubMed] [Google Scholar]
  403. Plasman N., Vray B. Quantification of bacterial phagocytosis by flow cytometry and spectrofluorimetry. J Immunol Methods. 1994 Sep 14;174(1-2):195–202. doi: 10.1016/0022-1759(94)90022-1. [DOI] [PubMed] [Google Scholar]
  404. Plovins A., Alvarez A. M., Ibañez M., Molina M., Nombela C. Use of fluorescein-di-beta-D-galactopyranoside (FDG) and C12-FDG as substrates for beta-galactosidase detection by flow cytometry in animal, bacterial, and yeast cells. Appl Environ Microbiol. 1994 Dec;60(12):4638–4641. doi: 10.1128/aem.60.12.4638-4641.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  405. Poot M., Kavanagh T. J., Kang H. C., Haugland R. P., Rabinovitch P. S. Flow cytometric analysis of cell cycle-dependent changes in cell thiol level by combining a new laser dye with Hoechst 33342. Cytometry. 1991;12(2):184–187. doi: 10.1002/cyto.990120214. [DOI] [PubMed] [Google Scholar]
  406. Pore R. S. Antibiotic susceptibility testing by flow cytometry. J Antimicrob Chemother. 1994 Nov;34(5):613–627. doi: 10.1093/jac/34.5.613. [DOI] [PubMed] [Google Scholar]
  407. Porro D., Ranzi B. M., Smeraldi C., Martegani E., Alberghina L. A double flow cytometric tag allows tracking of the dynamics of cell cycle progression of newborn Saccharomyces cerevisiae cells during balanced exponential growth. Yeast. 1995 Sep 30;11(12):1157–1169. doi: 10.1002/yea.320111206. [DOI] [PubMed] [Google Scholar]
  408. Porro D., Srienc F. Tracking of individual cell cohorts in asynchronous Saccharomyces cerevisiae populations. Biotechnol Prog. 1995 May-Jun;11(3):342–347. doi: 10.1021/bp00033a600. [DOI] [PubMed] [Google Scholar]
  409. Porter J. F., Connor K., van der Zee A., Reubsaet F., Ibsen P., Heron I., Chaby R., Le Blay K., Donachie W. Characterisation of ovine Bordetella parapertussis isolates by analysis of specific endotoxin (lipopolysaccharide) epitopes, filamentous haemagglutinin production, cellular fatty acid composition and antibiotic sensitivity. FEMS Microbiol Lett. 1995 Oct 15;132(3):195–201. doi: 10.1111/j.1574-6968.1995.tb07833.x. [DOI] [PubMed] [Google Scholar]
  410. Porter J., Deere D., Pickup R., Edwards C. Fluorescent probes and flow cytometry: new insights into environmental bacteriology. Cytometry. 1996 Feb 1;23(2):91–96. doi: 10.1002/(SICI)1097-0320(19960201)23:2<91::AID-CYTO1>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  411. Porter J., Edwards C., Morgan J. A., Pickup R. W. Rapid, automated separation of specific bacteria from lake water and sewage by flow cytometry and cell sorting. Appl Environ Microbiol. 1993 Oct;59(10):3327–3333. doi: 10.1128/aem.59.10.3327-3333.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  412. Porter J., Pickup R., Edwards C. Flow cytometric detection of specific genes in genetically modified bacteria using in situ polymerase chain reaction. FEMS Microbiol Lett. 1995 Dec 1;134(1):51–56. doi: 10.1111/j.1574-6968.1995.tb07913.x. [DOI] [PubMed] [Google Scholar]
  413. Poulsen P., Jensen K. F. Three genes preceding pyrE on the Escherichia coli chromosome are essential for survival and normal cell morphology in stationary culture and at high temperature. Res Microbiol. 1991 Feb-Apr;142(2-3):283–288. doi: 10.1016/0923-2508(91)90042-9. [DOI] [PubMed] [Google Scholar]
  414. Powell K. T., Weaver J. C. Gel microdroplets and flow cytometry: rapid determination of antibody secretion by individual cells within a cell population. Biotechnology (N Y) 1990 Apr;8(4):333–337. doi: 10.1038/nbt0490-333. [DOI] [PubMed] [Google Scholar]
  415. Prasher D. C. Using GFP to see the light. Trends Genet. 1995 Aug;11(8):320–323. doi: 10.1016/s0168-9525(00)89090-3. [DOI] [PubMed] [Google Scholar]
  416. Price B. J., Kollman V. H., Salzman G. C. Light-scatter analysis of microalgae. Correlation of scatter patterns from pure and mixed asynchronous cultures. Biophys J. 1978 Apr;22(1):29–36. doi: 10.1016/S0006-3495(78)85468-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  417. Pringle J. R., Preston R. A., Adams A. E., Stearns T., Drubin D. G., Haarer B. K., Jones E. W. Fluorescence microscopy methods for yeast. Methods Cell Biol. 1989;31:357–435. doi: 10.1016/s0091-679x(08)61620-9. [DOI] [PubMed] [Google Scholar]
  418. Puchalski R. B., Fahl W. E. Gene transfer by electroporation, lipofection, and DEAE-dextran transfection: compatibility with cell-sorting by flow cytometry. Cytometry. 1992;13(1):23–30. doi: 10.1002/cyto.990130106. [DOI] [PubMed] [Google Scholar]
  419. Puchalski R. B., Manoharan T. H., Lathrop A. L., Fahl W. E. Recombinant glutathione S-transferase (GST) expressing cells purified by flow cytometry on the basis of a GST-catalyzed intracellular conjugation of glutathione to monochlorobimane. Cytometry. 1991;12(7):651–665. doi: 10.1002/cyto.990120710. [DOI] [PubMed] [Google Scholar]
  420. Qvist P., Aasted B., Bloch B., Meyling A., Rønsholt L., Houe H. Flow cytometric detection of bovine viral diarrhea virus in peripheral blood leukocytes of persistently infected cattle. Can J Vet Res. 1990 Oct;54(4):469–472. [PMC free article] [PubMed] [Google Scholar]
  421. ROTMAN B. Measurement of activity of single molecules of beta-D-galactosidase. Proc Natl Acad Sci U S A. 1961 Dec 15;47:1981–1991. doi: 10.1073/pnas.47.12.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  422. Rabinovitch P. S., June C. H., Kavanagh T. J. Introduction to functional cell assays. Ann N Y Acad Sci. 1993 Mar 20;677:252–264. doi: 10.1111/j.1749-6632.1993.tb38782.x. [DOI] [PubMed] [Google Scholar]
  423. Radbruch A., Mechtold B., Thiel A., Miltenyi S., Pflüger E. High-gradient magnetic cell sorting. Methods Cell Biol. 1994;42(Pt B):387–403. doi: 10.1016/s0091-679x(08)61086-9. [DOI] [PubMed] [Google Scholar]
  424. Raether W., Mehlhorn H., Hofmann J., Bräu B., Ehrlich K. Flow cytometric analysis of Eimeria tenella sporozoite populations exposed to salinomycin sodium in vitro: a comparative study using light and electron microscopy and an in vitro sporozoite invasion-inhibition test. Parasitol Res. 1991;77(5):386–394. doi: 10.1007/BF00931633. [DOI] [PubMed] [Google Scholar]
  425. Ravdin P. M., Clark G. M., Hough J. J., Owens M. A., McGuire W. L. Neural Network Analysis of DNA flow cytometry histograms. Cytometry. 1993;14(1):74–80. doi: 10.1002/cyto.990140113. [DOI] [PubMed] [Google Scholar]
  426. Raybourne R. B., Bunning V. K. Bacterium-host cell interactions at the cellular level: fluorescent labeling of bacteria and analysis of short-term bacterium-phagocyte interaction by flow cytometry. Infect Immun. 1994 Feb;62(2):665–672. doi: 10.1128/iai.62.2.665-672.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  427. Reers M., Smith T. W., Chen L. B. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry. 1991 May 7;30(18):4480–4486. doi: 10.1021/bi00232a015. [DOI] [PubMed] [Google Scholar]
  428. Rehse M. A., Corpuz S., Heimfeld S., Minie M., Yachimiak D. Use of fluorescence threshold triggering and high-speed flow cytometry for rare event detection. Cytometry. 1995 Dec 15;22(4):317–322. doi: 10.1002/cyto.990220408. [DOI] [PubMed] [Google Scholar]
  429. Rice G. C., Pennica D., Borree J. A., Williams S. R. Measurement of transient cDNA expression in mammalian cells using flow cytometric cell analysis and sorting. Cytometry. 1991;12(3):221–233. doi: 10.1002/cyto.990120304. [DOI] [PubMed] [Google Scholar]
  430. Richard P., Teusink B., Westerhoff H. V., van Dam K. Around the growth phase transition S. cerevisiae's make-up favours sustained oscillations of intracellular metabolites. FEBS Lett. 1993 Feb 22;318(1):80–82. doi: 10.1016/0014-5793(93)81332-t. [DOI] [PubMed] [Google Scholar]
  431. Rijkers G. T., Justement L. B., Griffioen A. W., Cambier J. C. Improved method for measuring intracellular Ca++ with fluo-3. Cytometry. 1990;11(8):923–927. doi: 10.1002/cyto.990110813. [DOI] [PubMed] [Google Scholar]
  432. Riley D. E., Krieger J. N., Miner D., Rabinovitch P. S. Trichomonas vaginalis: dominant G2 period and G2 phase arrest in a representative of an early branching eukaryotic lineage. J Eukaryot Microbiol. 1994 Jul-Aug;41(4):408–414. doi: 10.1111/j.1550-7408.1994.tb06098.x. [DOI] [PubMed] [Google Scholar]
  433. Rivkin R. B., Phinney D. A., Yentsch C. M. Effects of flow cytometric analysis and cell sorting on photosynthetic carbon uptake by phytoplankton in cultures and from natural populations. Appl Environ Microbiol. 1986 Oct;52(4):935–938. doi: 10.1128/aem.52.4.935-938.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  434. Rizzuto R., Brini M., Pizzo P., Murgia M., Pozzan T. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol. 1995 Jun 1;5(6):635–642. doi: 10.1016/s0960-9822(95)00128-x. [DOI] [PubMed] [Google Scholar]
  435. Robertson B. R., Button D. K. Characterizing aquatic bacteria according to population, cell size, and apparent DNA content by flow cytometry. Cytometry. 1989 Jan;10(1):70–76. doi: 10.1002/cyto.990100112. [DOI] [PubMed] [Google Scholar]
  436. Robinson J. P., Durack G., Kelley S. An innovation in flow cytometry data collection and analysis producing a correlated multiple sample analysis in a single file. Cytometry. 1991;12(1):82–90. doi: 10.1002/cyto.990120112. [DOI] [PubMed] [Google Scholar]
  437. Rodgers M. R., Flanigan D. J., Jakubowski W. Identification of algae which interfere with the detection of Giardia cysts and Cryptosporidium oocysts and a method for alleviating this interference. Appl Environ Microbiol. 1995 Oct;61(10):3759–3763. doi: 10.1128/aem.61.10.3759-3763.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  438. Rodriguez G. G., Phipps D., Ishiguro K., Ridgway H. F. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol. 1992 Jun;58(6):1801–1808. doi: 10.1128/aem.58.6.1801-1808.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  439. Ronot X., Benel L., Adolphe M., Mounolou J. C. Mitochondrial analysis in living cells: the use of rhodamine 123 and flow cytometry. Biol Cell. 1986;57(1):1–7. doi: 10.1111/j.1768-322x.1986.tb00458.x. [DOI] [PubMed] [Google Scholar]
  440. Ropp J. D., Donahue C. J., Wolfgang-Kimball D., Hooley J. J., Chin J. Y., Hoffman R. A., Cuthbertson R. A., Bauer K. D. Aequorea green fluorescent protein analysis by flow cytometry. Cytometry. 1995 Dec 1;21(4):309–317. doi: 10.1002/cyto.990210402. [DOI] [PubMed] [Google Scholar]
  441. Rosenberg S. M., Harris R. S., Torkelson J. Molecular handles on adaptive mutation. Mol Microbiol. 1995 Oct;18(2):185–189. doi: 10.1111/j.1365-2958.1995.mmi_18020185.x. [DOI] [PubMed] [Google Scholar]
  442. Rosenberg S. M. In pursuit of a molecular mechanism for adaptive mutation. Genome. 1994 Dec;37(6):893–899. doi: 10.1139/g94-127. [DOI] [PubMed] [Google Scholar]
  443. Rosseau S., Seeger W., Pralle H., Lohmeyer J. Phagocytosis of viable Candida albicans by alveolar macrophages: flow cytometric quantification. Am J Physiol. 1994 Aug;267(2 Pt 1):L211–L217. doi: 10.1152/ajplung.1994.267.2.L211. [DOI] [PubMed] [Google Scholar]
  444. Roszak D. B., Colwell R. R. Survival strategies of bacteria in the natural environment. Microbiol Rev. 1987 Sep;51(3):365–379. doi: 10.1128/mr.51.3.365-379.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  445. Rothe G., Klingel S., Assfalg-Machleidt I., Machleidt W., Zirkelbach C., Banati R. B., Mangel W. F., Valet G. Flow cytometric analysis of protease activities in vital cells. Biol Chem Hoppe Seyler. 1992 Jul;373(7):547–554. doi: 10.1515/bchm3.1992.373.2.547. [DOI] [PubMed] [Google Scholar]
  446. Ryan C., Nguyen B. T., Sullivan S. J. Rapid assay for mycobacterial growth and antibiotic susceptibility using gel microdrop encapsulation. J Clin Microbiol. 1995 Jul;33(7):1720–1726. doi: 10.1128/jcm.33.7.1720-1726.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  447. Rye H. S., Dabora J. M., Quesada M. A., Mathies R. A., Glazer A. N. Fluorometric assay using dimeric dyes for double- and single-stranded DNA and RNA with picogram sensitivity. Anal Biochem. 1993 Jan;208(1):144–150. doi: 10.1006/abio.1993.1020. [DOI] [PubMed] [Google Scholar]
  448. Rye H. S., Yue S., Quesada M. A., Haugland R. P., Mathies R. A., Glazer A. N. Picogram detection of stable dye-DNA intercalation complexes with two-color laser-excited confocal fluorescence gel scanner. Methods Enzymol. 1993;217:414–431. doi: 10.1016/0076-6879(93)17080-o. [DOI] [PubMed] [Google Scholar]
  449. Rye H. S., Yue S., Wemmer D. E., Quesada M. A., Haugland R. P., Mathies R. A., Glazer A. N. Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res. 1992 Jun 11;20(11):2803–2812. doi: 10.1093/nar/20.11.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  450. Sahar E., Nir R., Lamed R. Flow cytometric analysis of entire microbial colonies. Cytometry. 1994 Mar 1;15(3):213–221. doi: 10.1002/cyto.990150306. [DOI] [PubMed] [Google Scholar]
  451. Sakamoto K., Iida K., Koyano T., Asada Y., Furuya T. Method for selecting anthocyanin-producing cells by a cell sorter. Planta Med. 1994 Jun;60(3):253–259. doi: 10.1055/s-2006-959470. [DOI] [PubMed] [Google Scholar]
  452. Sanders C. A., Yajko D. M., Hyun W., Langlois R. G., Nassos P. S., Fulwyler M. J., Hadley W. K. Determination of guanine-plus-cytosine content of bacterial DNA by dual-laser flow cytometry. J Gen Microbiol. 1990 Feb;136(2):359–365. doi: 10.1099/00221287-136-2-359. [DOI] [PubMed] [Google Scholar]
  453. Sanders C. A., Yajko D. M., Nassos P. S., Hyun W. C., Fulwyler M. J., Hadley W. K. Detection and analysis by dual-laser flow cytometry of bacteriophage T4 DNA inside Escherichia coli. Cytometry. 1991;12(2):167–171. doi: 10.1002/cyto.990120211. [DOI] [PubMed] [Google Scholar]
  454. Sato M., Yamashita K., Muraki C., Takarada Y., Otsuka N., Kagawa S., Matsuoka A. [Detection of Campylobacter species by using polymerase chain reaction and nonradioactive DNA probes. II. PCR direct sequencing of the Campylobacter DNA]. Rinsho Byori. 1992 Nov;40(11):1189–1197. [PubMed] [Google Scholar]
  455. Sayler G. S., Layton A. C. Environmental application of nucleic acid hybridization. Annu Rev Microbiol. 1990;44:625–648. doi: 10.1146/annurev.mi.44.100190.003205. [DOI] [PubMed] [Google Scholar]
  456. Schaule G., Flemming H. C., Ridgway H. F. Use of 5-cyano-2,3-ditolyl tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water. Appl Environ Microbiol. 1993 Nov;59(11):3850–3857. doi: 10.1128/aem.59.11.3850-3857.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  457. Schmid I., Krall W. J., Uittenbogaart C. H., Braun J., Giorgi J. V. Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry. 1992;13(2):204–208. doi: 10.1002/cyto.990130216. [DOI] [PubMed] [Google Scholar]
  458. Schnitzler N., Haase G., Büssing A., Kaufhold A., Beyhs P., Podbielski A. Measuring resistance to phagocytosis of group A and G streptococci: comparison of direct bactericidal assay and flow cytometry. Med Microbiol Immunol. 1995 May;184(1):17–22. doi: 10.1007/BF00216785. [DOI] [PubMed] [Google Scholar]
  459. Schott H., Von Cunow D., Langhals H. Labelling of liposomes with intercalating perylene fluorescent dyes. Biochim Biophys Acta. 1992 Oct 5;1110(2):151–157. doi: 10.1016/0005-2736(92)90352-m. [DOI] [PubMed] [Google Scholar]
  460. Schroeder W. A., Johnson E. A. Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem. 1995 Aug 4;270(31):18374–18379. doi: 10.1074/jbc.270.31.18374. [DOI] [PubMed] [Google Scholar]
  461. Schut F., de Vries E. J., Gottschal J. C., Robertson B. R., Harder W., Prins R. A., Button D. K. Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintenance, and Characteristics of Isolates under Laboratory Conditions. Appl Environ Microbiol. 1993 Jul;59(7):2150–2160. doi: 10.1128/aem.59.7.2150-2160.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  462. Severin E., Seidler E. Calibration of a flow cytometric assay of glucose-6-phosphate dehydrogenase activity. Cytometry. 1992;13(3):322–326. doi: 10.1002/cyto.990130315. [DOI] [PubMed] [Google Scholar]
  463. Shapiro H. M. Cell membrane potential analysis. Methods Cell Biol. 1994;41:121–133. doi: 10.1016/s0091-679x(08)61713-6. [DOI] [PubMed] [Google Scholar]
  464. Shapiro H. M. Multistation multiparameter flow cytometry: a critical review and rationale. Cytometry. 1983 Jan;3(4):227–243. doi: 10.1002/cyto.990030402. [DOI] [PubMed] [Google Scholar]
  465. Shapiro H. M., Stephens S. Flow cytometry of DNA content using oxazine 750 or related laser dyes with 633 nm excitation. Cytometry. 1986 Jan;7(1):107–110. doi: 10.1002/cyto.990070118. [DOI] [PubMed] [Google Scholar]
  466. Sharpless T. K., Bartholdi M., Melamed M. R. Size and refractive index dependence of simple forward angle scattering measurements in a flow system using sharply-focused illumination. J Histochem Cytochem. 1977 Jul;25(7):845–856. doi: 10.1177/25.7.330734. [DOI] [PubMed] [Google Scholar]
  467. Siekierka J., Datta A., Mauser L., Ochoa S. Initiation of protein synthesis in eukaryotes. Nature of ternary complex dissociation factor. J Biol Chem. 1982 Apr 25;257(8):4162–4165. [PubMed] [Google Scholar]
  468. Simon N., LeBot N., Marie D., Partensky F., Vaulot D. Fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes to identify small phytoplankton by flow cytometry. Appl Environ Microbiol. 1995 Jul;61(7):2506–2513. doi: 10.1128/aem.61.7.2506-2513.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  469. Sinclair C. G., Brown D. E. Effect of incomplete mixing on the analysis of the static behaviour of continuous cultures. Biotechnol Bioeng. 1970 Nov;12(6):1001–1017. doi: 10.1002/bit.260120610. [DOI] [PubMed] [Google Scholar]
  470. Sinclair C. G., Topiwala H. H. Model for continuous culture which considers the viability concept. Biotechnol Bioeng. 1970 Nov;12(6):1069–1079. doi: 10.1002/bit.260120612. [DOI] [PubMed] [Google Scholar]
  471. Skarstad K., Boye E. Degradation of individual chromosomes in recA mutants of Escherichia coli. J Bacteriol. 1993 Sep;175(17):5505–5509. doi: 10.1128/jb.175.17.5505-5509.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  472. Skarstad K., Boye E., Steen H. B. Timing of initiation of chromosome replication in individual Escherichia coli cells. EMBO J. 1986 Jul;5(7):1711–1717. doi: 10.1002/j.1460-2075.1986.tb04415.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  473. Skarstad K., Steen H. B., Boye E. Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry. J Bacteriol. 1983 May;154(2):656–662. doi: 10.1128/jb.154.2.656-662.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  474. Skarstad K., Steen H. B., Boye E. Escherichia coli DNA distributions measured by flow cytometry and compared with theoretical computer simulations. J Bacteriol. 1985 Aug;163(2):661–668. doi: 10.1128/jb.163.2.661-668.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  475. Skatrud P. L. Genetic engineering of beta-lactam antibiotic biosynthetic pathways in filamentous fungi. Trends Biotechnol. 1992 Sep;10(9):324–329. doi: 10.1016/0167-7799(92)90258-w. [DOI] [PubMed] [Google Scholar]
  476. Skowronek P., Krummeck G., Haferkamp O., Rödel G. Flow cytometry as a tool to discriminate respiratory-competent and respiratory-deficient yeast cells. Curr Genet. 1990 Oct;18(3):265–267. doi: 10.1007/BF00318391. [DOI] [PubMed] [Google Scholar]
  477. Slater M. L., Sharrow S. O., Gart J. J. Cell cycle of Saccharomycescerevisiae in populations growing at different rates. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3850–3854. doi: 10.1073/pnas.74.9.3850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  478. Slavík J. Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim Biophys Acta. 1982 Aug 11;694(1):1–25. doi: 10.1016/0304-4157(82)90012-0. [DOI] [PubMed] [Google Scholar]
  479. Smith G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985 Jun 14;228(4705):1315–1317. doi: 10.1126/science.4001944. [DOI] [PubMed] [Google Scholar]
  480. Smith M. J., Ryan D. E., Nakanishi K., Frank P., Hodgson K. O. Vanadium in ascidians and the chemistry of tunichromes. Met Ions Biol Syst. 1995;31:423–490. [PubMed] [Google Scholar]
  481. Sonnleitner B., Locher G., Fiechter A. Biomass determination. J Biotechnol. 1992 Aug;25(1-2):5–22. doi: 10.1016/0168-1656(92)90107-k. [DOI] [PubMed] [Google Scholar]
  482. Spratt B. G. Resistance to antibiotics mediated by target alterations. Science. 1994 Apr 15;264(5157):388–393. doi: 10.1126/science.8153626. [DOI] [PubMed] [Google Scholar]
  483. Srienc F., Campbell J. L., Bailey J. E. Flow cytometry analysis of recombinant Saccharomyces cerevisiae populations. Cytometry. 1986 Mar;7(2):132–141. doi: 10.1002/cyto.990070203. [DOI] [PubMed] [Google Scholar]
  484. Srienc F., Dien B. S. Kinetics of the cell cycle of Saccharomyces cerevisiae. Ann N Y Acad Sci. 1992 Oct 13;665:59–71. doi: 10.1111/j.1749-6632.1992.tb42574.x. [DOI] [PubMed] [Google Scholar]
  485. Srour E. F., Leemhuis T., Brandt J. E., vanBesien K., Hoffman R. Simultaneous use of rhodamine 123, phycoerythrin, Texas red, and allophycocyanin for the isolation of human hematopoietic progenitor cells. Cytometry. 1991;12(2):179–183. doi: 10.1002/cyto.990120213. [DOI] [PubMed] [Google Scholar]
  486. Stahl D. A., Flesher B., Mansfield H. R., Montgomery L. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol. 1988 May;54(5):1079–1084. doi: 10.1128/aem.54.5.1079-1084.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  487. Steen H. B., Boye E. Escherichia coli growth studied by dual-parameter flow cytophotometry. J Bacteriol. 1981 Feb;145(2):1091–1094. doi: 10.1128/jb.145.2.1091-1094.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  488. Steen H. B., Boye E., Skarstad K., Bloom B., Godal T., Mustafa S. Applications of flow cytometry on bacteria: cell cycle kinetics, drug effects, and quantitation of antibody binding. Cytometry. 1982 Jan;2(4):249–257. doi: 10.1002/cyto.990020409. [DOI] [PubMed] [Google Scholar]
  489. Steen H. B., Jernaes M. W., Skarstad K., Boye E. Staining and measurement of DNA in bacteria. Methods Cell Biol. 1994;42(Pt B):477–487. doi: 10.1016/s0091-679x(08)61091-2. [DOI] [PubMed] [Google Scholar]
  490. Steen H. B. Light scattering measurement in an arc lamp-based flow cytometer. Cytometry. 1990;11(2):223–230. doi: 10.1002/cyto.990110202. [DOI] [PubMed] [Google Scholar]
  491. Steen H. B., Lindmo T. Differential of light-scattering detection in an arc-lamp-based epi-illumination flow cytometer. Cytometry. 1985 Jul;6(4):281–285. doi: 10.1002/cyto.990060402. [DOI] [PubMed] [Google Scholar]
  492. Steen H. B., Lindmo T. Flow cytometry: a high-resolution instrument for everyone. Science. 1979 Apr 27;204(4391):403–404. doi: 10.1126/science.441727. [DOI] [PubMed] [Google Scholar]
  493. Steen H. B., Skarstad K., Boye E. DNA measurements of bacteria. Methods Cell Biol. 1990;33:519–526. doi: 10.1016/s0091-679x(08)60551-8. [DOI] [PubMed] [Google Scholar]
  494. Steen H. B., Skarstad K., Boye E. Flow cytometry of bacteria: cell cycle kinetics and effects of antibiotics. Ann N Y Acad Sci. 1986;468:329–338. doi: 10.1111/j.1749-6632.1986.tb42050.x. [DOI] [PubMed] [Google Scholar]
  495. Steen H. B., Sørensen O. I. Pulse modulation of the excitation light source boosts the sensitivity of an arc lamp-based flow cytometer. Cytometry. 1993;14(2):115–122. doi: 10.1002/cyto.990140203. [DOI] [PubMed] [Google Scholar]
  496. Stellmach J. Fluorescent redox dyes. 1. Production of fluorescent formazan by unstimulated and phorbol ester- or digitonin-stimulated Ehrlich ascites tumor cells. Histochemistry. 1984;80(2):137–143. doi: 10.1007/BF00679987. [DOI] [PubMed] [Google Scholar]
  497. Stemmer W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10747–10751. doi: 10.1073/pnas.91.22.10747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  498. Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]
  499. Stephanopoulos G., Vallino J. J. Network rigidity and metabolic engineering in metabolite overproduction. Science. 1991 Jun 21;252(5013):1675–1681. doi: 10.1126/science.1904627. [DOI] [PubMed] [Google Scholar]
  500. Stephens K. Pheromones among the procaryotes. Crit Rev Microbiol. 1986;13(4):309–334. doi: 10.3109/10408418609108741. [DOI] [PubMed] [Google Scholar]
  501. Swift S., Bainton N. J., Winson M. K. Gram-negative bacterial communication by N-acyl homoserine lactones: a universal language? Trends Microbiol. 1994 Jun;2(6):193–198. doi: 10.1016/0966-842x(94)90110-q. [DOI] [PubMed] [Google Scholar]
  502. Swift S., Throup J. P., Williams P., Salmond G. P., Stewart G. S. Quorum sensing: a population-density component in the determination of bacterial phenotype. Trends Biochem Sci. 1996 Jun;21(6):214–219. [PubMed] [Google Scholar]
  503. Sychra J. J., Bartels P. H., Bibbo M., Wied G. L. Dimensionality reducing displays in cell image analysis. Acta Cytol. 1977 Nov-Dec;21(6):747–752. [PubMed] [Google Scholar]
  504. Tanaka Y., Omura S. Agroactive compounds of microbial origin. Annu Rev Microbiol. 1993;47:57–87. doi: 10.1146/annurev.mi.47.100193.000421. [DOI] [PubMed] [Google Scholar]
  505. Tanke H. J., van der Keur M. Selection of defined cell types by flow-cytometric cell sorting. Trends Biotechnol. 1993 Feb;11(2):55–62. doi: 10.1016/0167-7799(93)90123-Q. [DOI] [PubMed] [Google Scholar]
  506. Tartakovsky B., Sheintuch M., Hilmer J. M., Scheper T. Application of scanning fluorometry for monitoring of a fermentation process. Biotechnol Prog. 1996 Jan-Feb;12(1):126–131. doi: 10.1021/bp950045h. [DOI] [PubMed] [Google Scholar]
  507. Tedeschi H. The mitochondrial membrane potential. Biol Rev Camb Philos Soc. 1980 May;55(2):171–206. doi: 10.1111/j.1469-185x.1980.tb00692.x. [DOI] [PubMed] [Google Scholar]
  508. Thom S. M., Horobin R. W., Seidler E., Barer M. R. Factors affecting the selection and use of tetrazolium salts as cytochemical indicators of microbial viability and activity. J Appl Bacteriol. 1993 Apr;74(4):433–443. doi: 10.1111/j.1365-2672.1993.tb05151.x. [DOI] [PubMed] [Google Scholar]
  509. Thorell B. Intracellular red-ox steady states as basis for cell characterization by flow cytofluorometry. Blood Cells. 1980;6(4):745–751. [PubMed] [Google Scholar]
  510. Thorsen B. K., Enger O., Norland S., Hoff K. A. Long-term starvation survival of Yersinia ruckeri at different salinities studied by microscopical and flow cytometric methods. Appl Environ Microbiol. 1992 May;58(5):1624–1628. doi: 10.1128/aem.58.5.1624-1628.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  511. Timperman A. T., Khatib K., Sweedler J. V. Wavelength-resolved fluorescence detection in capillary electrophoresis. Anal Chem. 1995 Jan 1;67(1):139–144. doi: 10.1021/ac00097a022. [DOI] [PubMed] [Google Scholar]
  512. Tobey R. A., Crissman H. A. Unique techniques for cell analysis utilizing mithramycin and flow microfluorometry. Exp Cell Res. 1975 Jun;93(1):235–239. doi: 10.1016/0014-4827(75)90445-0. [DOI] [PubMed] [Google Scholar]
  513. Torsvik V., Goksøyr J., Daae F. L. High diversity in DNA of soil bacteria. Appl Environ Microbiol. 1990 Mar;56(3):782–787. doi: 10.1128/aem.56.3.782-787.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  514. Torsvik V., Salte K., Sørheim R., Goksøyr J. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl Environ Microbiol. 1990 Mar;56(3):776–781. doi: 10.1128/aem.56.3.776-781.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  515. Traganos F. Flow cytometry: principles and applications. I. Cancer Invest. 1984;2(2):149–163. doi: 10.3109/07357908409020296. [DOI] [PubMed] [Google Scholar]
  516. Troussellier M., Courties C., Vaquer A. Recent applications of flow cytometry in aquatic microbial ecology. Biol Cell. 1993;78(1-2):111–121. doi: 10.1016/0248-4900(93)90121-t. [DOI] [PubMed] [Google Scholar]
  517. Tyndall R. L., Hand R. E., Jr, Mann R. C., Evans C., Jernigan R. Application of flow cytometry to detection and characterization of Legionella spp. Appl Environ Microbiol. 1985 Apr;49(4):852–857. doi: 10.1128/aem.49.4.852-857.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  518. Tønjum T., Bøvre K., Juni E. Fastidious gram-negative bacteria: meeting the diagnostic challenge with nucleic acid analysis. APMIS. 1995 Sep;103(9):609–627. doi: 10.1111/j.1699-0463.1995.tb01414.x. [DOI] [PubMed] [Google Scholar]
  519. Udenfriend S., Gerber L. D., Brink L., Spector S. Scintillation proximity radioimmunoassay utilizing 125I-labeled ligands. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8672–8676. doi: 10.1073/pnas.82.24.8672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  520. Udenfriend S., Gerber L., Nelson N. Scintillation proximity assay: a sensitive and continuous isotopic method for monitoring ligand/receptor and antigen/antibody interactions. Anal Biochem. 1987 Mar;161(2):494–500. doi: 10.1016/0003-2697(87)90479-9. [DOI] [PubMed] [Google Scholar]
  521. Ueckert J., Breeuwer P., Abee T., Stephens P., von Caron G. N., ter Steeg P. F. Flow cytometry applications in physiological study and detection of foodborne microorganisms. Int J Food Microbiol. 1995 Dec;28(2):317–326. doi: 10.1016/0168-1605(95)00066-6. [DOI] [PubMed] [Google Scholar]
  522. Van Dilla M. A., Langlois R. G., Pinkel D., Yajko D., Hadley W. K. Bacterial characterization by flow cytometry. Science. 1983 May 6;220(4597):620–622. doi: 10.1126/science.6188215. [DOI] [PubMed] [Google Scholar]
  523. Van Noorden C. J., Jonges G. N. Analysis of enzyme reactions in situ. Histochem J. 1995 Feb;27(2):101–118. doi: 10.1007/BF00243905. [DOI] [PubMed] [Google Scholar]
  524. Van Noorden C. J., Jonges G. N. Heterogeneity of kinetic parameters of enzymes in situ in rat liver lobules. Histochem Cell Biol. 1995 Feb;103(2):93–101. doi: 10.1007/BF01454005. [DOI] [PubMed] [Google Scholar]
  525. Van de Peer Y., Nicolaï S., De Rijk P., De Wachter R. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res. 1996 Jan 1;24(1):86–91. doi: 10.1093/nar/24.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  526. Vanoni M., Johnson S. P. Phosphorylation of ribosomal protein S10 is dispensable for initiation of DNA replication and bud emergence in Saccharomyces cerevisiae. Eur J Cell Biol. 1991 Jun;55(1):179–182. [PubMed] [Google Scholar]
  527. Vaulot D., Courties C., Partensky F. A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytometry. 1989 Sep;10(5):629–635. doi: 10.1002/cyto.990100519. [DOI] [PubMed] [Google Scholar]
  528. Vaulot D., Marie D., Olson R. J., Chisholm S. W. Growth of prochlorococcus, a photosynthetic prokaryote, in the equatorial pacific ocean. Science. 1995 Jun 9;268(5216):1480–1482. doi: 10.1126/science.268.5216.1480. [DOI] [PubMed] [Google Scholar]
  529. Vayssiere J. L., Petit P. X., Risler Y., Mignotte B. Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11752–11756. doi: 10.1073/pnas.91.24.11752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  530. Veldhuyzen van Zanten S. J., Sherman P. M. Helicobacter pylori infection as a cause of gastritis, duodenal ulcer, gastric cancer and nonulcer dyspepsia: a systematic overview. CMAJ. 1994 Jan 15;150(2):177–185. [PMC free article] [PubMed] [Google Scholar]
  531. Venance S. L., Watson M. H., Wigle D. A., Mak A. S., Pang S. C. Differential expression and activity of p34cdc2 in cultured aortic adventitial fibroblasts derived from spontaneously hypertensive and Wistar-Kyoto rats. J Hypertens. 1993 May;11(5):483–489. doi: 10.1097/00004872-199305000-00003. [DOI] [PubMed] [Google Scholar]
  532. Vesey G., Hutton P., Champion A., Ashbolt N., Williams K. L., Warton A., Veal D. Application of flow cytometric methods for the routine detection of Cryptosporidium and Giardia in water. Cytometry. 1994 May 1;16(1):1–6. doi: 10.1002/cyto.990160102. [DOI] [PubMed] [Google Scholar]
  533. Vesey G., Narai J., Ashbolt N., Williams K., Veal D. Detection of specific microorganisms in environmental samples using flow cytometry. Methods Cell Biol. 1994;42(Pt B):489–522. doi: 10.1016/s0091-679x(08)61092-4. [DOI] [PubMed] [Google Scholar]
  534. Vesey G., Slade J. S., Byrne M., Shepherd K., Dennis P. J., Fricker C. R. Routine monitoring of Cryptosporidium oocysts in water using flow cytometry. J Appl Bacteriol. 1993 Jul;75(1):87–90. doi: 10.1111/j.1365-2672.1993.tb03413.x. [DOI] [PubMed] [Google Scholar]
  535. Vesey G., Slade J. S., Byrne M., Shepherd K., Fricker C. R. A new method for the concentration of Cryptosporidium oocysts from water. J Appl Bacteriol. 1993 Jul;75(1):82–86. doi: 10.1111/j.1365-2672.1993.tb03412.x. [DOI] [PubMed] [Google Scholar]
  536. Vetter D., Tate E. M., Gallop M. A. Strategies for the synthesis and screening of glycoconjugates. 2. Covalent immobilization for flow cytometry. Bioconjug Chem. 1995 May-Jun;6(3):319–322. doi: 10.1021/bc00033a014. [DOI] [PubMed] [Google Scholar]
  537. Via L. E., Curcic R., Mudd M. H., Dhandayuthapani S., Ulmer R. J., Deretic V. Elements of signal transduction in Mycobacterium tuberculosis: in vitro phosphorylation and in vivo expression of the response regulator MtrA. J Bacteriol. 1996 Jun;178(11):3314–3321. doi: 10.1128/jb.178.11.3314-3321.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  538. Votyakova T. V., Kaprelyants A. S., Kell D. B. Influence of Viable Cells on the Resuscitation of Dormant Cells in Micrococcus luteus Cultures Held in an Extended Stationary Phase: the Population Effect. Appl Environ Microbiol. 1994 Sep;60(9):3284–3291. doi: 10.1128/aem.60.9.3284-3291.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  539. Waggoner A. S. Dye indicators of membrane potential. Annu Rev Biophys Bioeng. 1979;8:47–68. doi: 10.1146/annurev.bb.08.060179.000403. [DOI] [PubMed] [Google Scholar]
  540. Waggoner A. S., Ernst L. A., Chen C. H., Rechtenwald D. J. PE-CY5. A new fluorescent antibody label for three-color flow cytometry with a single laser. Ann N Y Acad Sci. 1993 Mar 20;677:185–193. doi: 10.1111/j.1749-6632.1993.tb38776.x. [DOI] [PubMed] [Google Scholar]
  541. Wagner M., Amann R., Lemmer H., Schleifer K. H. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol. 1993 May;59(5):1520–1525. doi: 10.1128/aem.59.5.1520-1525.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  542. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K. H. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol. 1994 Mar;60(3):792–800. doi: 10.1128/aem.60.3.792-800.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  543. Walberg M., Gaustad P., Steen H. B. Rapid flow cytometric assessment of mecillinam and ampicillin bacterial susceptibility. J Antimicrob Chemother. 1996 Jun;37(6):1063–1075. doi: 10.1093/jac/37.6.1063. [DOI] [PubMed] [Google Scholar]
  544. Wallner G., Amann R., Beisker W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;14(2):136–143. doi: 10.1002/cyto.990140205. [DOI] [PubMed] [Google Scholar]
  545. Wallner G., Erhart R., Amann R. Flow cytometric analysis of activated sludge with rRNA-targeted probes. Appl Environ Microbiol. 1995 May;61(5):1859–1866. doi: 10.1128/aem.61.5.1859-1866.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  546. Watkins N. J., Knight M. R., Trewavas A. J., Campbell A. K. Free calcium transients in chemotactic and non-chemotactic strains of Escherichia coli determined by using recombinant aequorin. Biochem J. 1995 Mar 15;306(Pt 3):865–869. doi: 10.1042/bj3060865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  547. Wayne L. G. Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis. 1994 Nov;13(11):908–914. doi: 10.1007/BF02111491. [DOI] [PubMed] [Google Scholar]
  548. Wayne L. G., Hayes L. G. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun. 1996 Jun;64(6):2062–2069. doi: 10.1128/iai.64.6.2062-2069.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  549. Wayne L. G., Sramek H. A. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1994 Sep;38(9):2054–2058. doi: 10.1128/aac.38.9.2054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  550. Weaver J. C., Bliss J. G., Powell K. T., Harrison G. I., Williams G. B. Rapid clonal growth measurements at the single-cell level: gel microdroplets and flow cytometry. Biotechnology (N Y) 1991 Sep;9(9):873–877. doi: 10.1038/nbt0991-873. [DOI] [PubMed] [Google Scholar]
  551. Webb C. D., Decatur A., Teleman A., Losick R. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. J Bacteriol. 1995 Oct;177(20):5906–5911. doi: 10.1128/jb.177.20.5906-5911.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  552. Weetman A. P., Pickerill A. P., Watson P., Chatterjee V. K., Edwards O. M. Treatment of Graves' disease with the block-replace regimen of antithyroid drugs: the effect of treatment duration and immunogenetic susceptibility on relapse. Q J Med. 1994 Jun;87(6):337–341. [PubMed] [Google Scholar]
  553. Wei W., Nurse P., Broek D. Yeast cells can enter a quiescent state through G1, S, G2, or M phase of the cell cycle. Cancer Res. 1993 Apr 15;53(8):1867–1870. [PubMed] [Google Scholar]
  554. Weichart D., Kjelleberg S. Stress resistance and recovery potential of culturable and viable but nonculturable cells of Vibrio vulnificus. Microbiology. 1996 Apr;142(Pt 4):845–853. doi: 10.1099/00221287-142-4-845. [DOI] [PubMed] [Google Scholar]
  555. Weichart D., Oliver J. D., Kjelleberg S. Low temperature induced non-culturability and killing of Vibrio vulnificus. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):205–210. doi: 10.1111/j.1574-6968.1992.tb14041.x. [DOI] [PubMed] [Google Scholar]
  556. Weinstein J. N., Kohn K. W., Grever M. R., Viswanadhan V. N., Rubinstein L. V., Monks A. P., Scudiero D. A., Welch L., Koutsoukos A. D., Chiausa A. J. Neural computing in cancer drug development: predicting mechanism of action. Science. 1992 Oct 16;258(5081):447–451. doi: 10.1126/science.1411538. [DOI] [PubMed] [Google Scholar]
  557. Weinstein J. N., Myers T., Buolamwini J., Raghavan K., van Osdol W., Licht J., Viswanadhan V. N., Kohn K. W., Rubinstein L. V., Koutsoukos A. D. Predictive statistics and artificial intelligence in the U.S. National Cancer Institute's Drug Discovery Program for Cancer and AIDS. Stem Cells. 1994 Jan;12(1):13–22. doi: 10.1002/stem.5530120106. [DOI] [PubMed] [Google Scholar]
  558. Westerhoff H. V., Tsong T. Y., Chock P. B., Chen Y. D., Astumian R. D. How enzymes can capture and transmit free energy from an oscillating electric field. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4734–4738. doi: 10.1073/pnas.83.13.4734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  559. Whiteley A. S., O'Donnell A. G., Macnaughton S. J., Barer M. R. Cytochemical colocalization and quantitation of phenotypic and genotypic characteristics in individual bacterial cells. Appl Environ Microbiol. 1996 Jun;62(6):1873–1879. doi: 10.1128/aem.62.6.1873-1879.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  560. Wilkins M. F., Morris C. W., Boddy L. A comparison of Radial Basis Function and backpropagation neural networks for identification of marine phytoplankton from multivariate flow cytometry data. Comput Appl Biosci. 1994 Jun;10(3):285–294. doi: 10.1093/bioinformatics/10.3.285. [DOI] [PubMed] [Google Scholar]
  561. Winson M. K., Kell D. B. Going places: forced and natural molecular evolution. Trends Biotechnol. 1996 Sep;14(9):323–325. doi: 10.1016/0167-7799(96)30013-9. [DOI] [PubMed] [Google Scholar]
  562. Winzeler E., Shapiro L. Use of flow cytometry to identify a Caulobacter 4.5 S RNA temperature-sensitive mutant defective in the cell cycle. J Mol Biol. 1995 Aug 18;251(3):346–365. doi: 10.1006/jmbi.1995.0439. [DOI] [PubMed] [Google Scholar]
  563. Wittrup K. D., Bailey J. E. A single-cell assay of beta-galactosidase activity in Saccharomyces cerevisiae. Cytometry. 1988 Jul;9(4):394–404. doi: 10.1002/cyto.990090418. [DOI] [PubMed] [Google Scholar]
  564. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  565. Yamada H., Ochi K., Nakada S., Nemoto T., Horiguchi-Yamada J. Changes of cell cycle-regulating genes in interferon-treated Daudi cells. Mol Cell Biochem. 1994 Jul 27;136(2):117–123. doi: 10.1007/BF00926071. [DOI] [PubMed] [Google Scholar]
  566. Yamaguchi N., Inaoka S., Tani K., Kenzaka T., Nasu M. Detection of specific bacterial cells with 2-hydroxy-3-naphthoic acid-2'-phenylanilide phosphate and fast red TR in situ hybridization. Appl Environ Microbiol. 1996 Jan;62(1):275–278. doi: 10.1128/aem.62.1.275-278.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  567. Yarmolinsky M. B. Programmed cell death in bacterial populations. Science. 1995 Feb 10;267(5199):836–837. doi: 10.1126/science.7846528. [DOI] [PubMed] [Google Scholar]
  568. Yokota S., Terashima M., Chiba J., Noguchi H. Variable cross-reactivity of Pseudomonas aeruginosa lipopolysaccharide-code-specific monoclonal antibodies and its possible relationship with serotype. J Gen Microbiol. 1992 Feb;138(2):289–296. doi: 10.1099/00221287-138-2-289. [DOI] [PubMed] [Google Scholar]
  569. Young D. B., Duncan K. Prospects for new interventions in the treatment and prevention of mycobacterial disease. Annu Rev Microbiol. 1995;49:641–673. doi: 10.1146/annurev.mi.49.100195.003233. [DOI] [PubMed] [Google Scholar]
  570. Youvan D. C., Goldman E., Delagrave S., Yang M. M. Digital imaging spectroscopy for massively parallel screening of mutants. Methods Enzymol. 1995;246:732–748. doi: 10.1016/0076-6879(95)46031-4. [DOI] [PubMed] [Google Scholar]
  571. Youvan D. C. Imaging sequence space. Nature. 1994 May 5;369(6475):79–80. doi: 10.1038/369079a0. [DOI] [PubMed] [Google Scholar]
  572. Youvan D. C. Photosynthetic reaction centers: interfacing molecular genetics and optical spectroscopy. Trends Biochem Sci. 1991 Apr;16(4):145–149. doi: 10.1016/0968-0004(91)90057-3. [DOI] [PubMed] [Google Scholar]
  573. Yu F. P., McFeters G. A. Physiological responses of bacteria in biofilms to disinfection. Appl Environ Microbiol. 1994 Jul;60(7):2462–2466. doi: 10.1128/aem.60.7.2462-2466.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  574. Yu F. P., McFeters G. A. Rapid in situ assessment of physiological activities in bacterial biofilms using fluorescent probes. J Microbiol Methods. 1994;20:1–10. doi: 10.1016/0167-7012(94)90058-2. [DOI] [PubMed] [Google Scholar]
  575. Yurkow E. J., McKenzie M. A. Characterization of hypoxia-dependent peroxide production in cultures of Saccharomyces cerevisiae using flow cytometry: a model for ischemic tissue destruction. Cytometry. 1993;14(3):287–293. doi: 10.1002/cyto.990140309. [DOI] [PubMed] [Google Scholar]
  576. Zabriskie D. W., Humphrey A. E. Estimation of fermentation biomass concentration by measuring culture fluorescence. Appl Environ Microbiol. 1978 Feb;35(2):337–343. doi: 10.1128/aem.35.2.337-343.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  577. Zamzami N., Marchetti P., Castedo M., Decaudin D., Macho A., Hirsch T., Susin S. A., Petit P. X., Mignotte B., Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995 Aug 1;182(2):367–377. doi: 10.1084/jem.182.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  578. Zamzami N., Marchetti P., Castedo M., Zanin C., Vayssière J. L., Petit P. X., Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med. 1995 May 1;181(5):1661–1672. doi: 10.1084/jem.181.5.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  579. Zeng Z., Benson S. C., Glazer A. N. Fluorescence energy-transfer cyanine heterodimers with high affinity for double-stranded DNA. II. Applications to multiplex restriction fragment sizing. Anal Biochem. 1995 Oct 10;231(1):256–260. doi: 10.1006/abio.1995.1528. [DOI] [PubMed] [Google Scholar]
  580. Zhang Y. Z., Naleway J. J., Larison K. D., Huang Z. J., Haugland R. P. Detecting lacZ gene expression in living cells with new lipophilic, fluorogenic beta-galactosidase substrates. FASEB J. 1991 Dec;5(15):3108–3113. doi: 10.1096/fasebj.5.15.1720751. [DOI] [PubMed] [Google Scholar]
  581. Zheng Q., Kyle D. J. Computational screening of combinatorial libraries. Bioorg Med Chem. 1996 May;4(5):631–638. doi: 10.1016/0968-0896(96)00056-9. [DOI] [PubMed] [Google Scholar]
  582. Zilmer N. A., Godavarti M., Rodriguez J. J., Yopp T. A., Lambert G. M., Galbraith D. W. Flow cytometric analysis using digital signal processing. Cytometry. 1995 Jun 1;20(2):102–117. doi: 10.1002/cyto.990200203. [DOI] [PubMed] [Google Scholar]
  583. al-Rubeai M., Chalder S., Bird R., Emery A. N. Cell cycle, cell size and mitochondrial activity of hybridoma cells during batch cultivation. Cytotechnology. 1991 Nov;7(3):179–186. doi: 10.1007/BF00365929. [DOI] [PubMed] [Google Scholar]
  584. al-Rubeai M., Emery A. N., Chalder S. Flow cytometric study of cultured mammalian cells. J Biotechnol. 1991 Jun;19(1):67–81. doi: 10.1016/0168-1656(91)90075-7. [DOI] [PubMed] [Google Scholar]
  585. al-Rubeai M., Emery A. N., Chalder S., Goldman M. H. A flow cytometric study of hydrodynamic damage to mammalian cells. J Biotechnol. 1993 Nov;31(2):161–177. doi: 10.1016/0168-1656(93)90158-j. [DOI] [PubMed] [Google Scholar]
  586. al-Rubeai M., Emery A. N. Flow cytometry in animal culture. Biotechnology (N Y) 1993 May;11(5):572-4, 577-9. doi: 10.1038/nbt0593-572. [DOI] [PubMed] [Google Scholar]
  587. de Wit D., Wootton M., Dhillon J., Mitchison D. A. The bacterial DNA content of mouse organs in the Cornell model of dormant tuberculosis. Tuber Lung Dis. 1995 Dec;76(6):555–562. doi: 10.1016/0962-8479(95)90534-0. [DOI] [PubMed] [Google Scholar]
  588. de la Fuente J. M., Alvarez A., Nombela C., Sanchez M. Flow cytometric analysis of Saccharomyces cerevisiae autolytic mutants and protoplasts. Yeast. 1992 Jan;8(1):39–45. doi: 10.1002/yea.320080104. [DOI] [PubMed] [Google Scholar]
  589. van Erp P. E., Jansen M. J., de Jongh G. J., Boezeman J. B., Schalkwijk J. Ratiometric measurement of intracellular pH in cultured human keratinocytes using carboxy-SNARF-1 and flow cytometry. Cytometry. 1991;12(2):127–132. doi: 10.1002/cyto.990120205. [DOI] [PubMed] [Google Scholar]
  590. van der Waaij L. A., Mesander G., Limburg P. C., van der Waaij D. Direct flow cytometry of anaerobic bacteria in human feces. Cytometry. 1994 Jul 1;16(3):270–279. doi: 10.1002/cyto.990160312. [DOI] [PubMed] [Google Scholar]
  591. von Freiesleben U., Rasmussen K. V. DNA replication in Escherichia coli gyrB(Ts) mutants analysed by flow cytometry. Res Microbiol. 1991 Feb-Apr;142(2-3):223–227. doi: 10.1016/0923-2508(91)90034-8. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES