Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1992 Dec;66(12):6953–6959. doi: 10.1128/jvi.66.12.6953-6959.1992

Sulfation of the human immunodeficiency virus envelope glycoprotein.

H B Bernstein 1, R W Compans 1
PMCID: PMC240329  PMID: 1433500

Abstract

Sulfation is a posttranslational modification of proteins which occurs on either the tyrosine residues or the carbohydrate moieties of some glycoproteins. In the case of secretory proteins, sulfation has been hypothesized to act as a signal for export from the cell. We have shown that the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein precursor (gp160) as well as the surface (gp120) and transmembrane (gp41) subunits can be specifically labelled with 35SO42-. Sulfated HIV-1 envelope glycoproteins were identified in H9 cells infected with the IIIB isolate of HIV-1 and in the cell lysates and culture media of cells infected with vaccinia virus recombinants expressing a full-length or truncated, secreted form of the HIV-1 gp160 gene. N-glycosidase F digestion of 35SO4(2-)-labelled envelope proteins removed virtually all radiolabel from gp160, gp120, and gp41, indicating that sulfate was linked to the carbohydrate chains of the glycoprotein. The 35SO42-label was at least partially resistant to endoglycosidase H digestion, indicating that some sulfate was linked to complex carbohydrates. Brefeldin A, a compound that inhibits the endoplasmic reticulum to Golgi transport of glycoproteins, was found to inhibit the sulfation of the envelope glycoproteins. Envelope glycoproteins synthesized in cells treated with chlorate failed to incorporate 35SO42-. However, HIV glycoproteins were still secreted from cells in the presence of chlorate, indicating that sulfation is not a requirement for secretion of envelope glycoproteins. Sulfation of HIV-2 and simian immunodeficiency virus envelope glycoproteins has also been demonstrated by using vaccinia virus-based expression systems. Sulfation is a major determinant of negative charge and could play a role in biological functions and antigenic properties of HIV glycoproteins.

Full text

PDF
6957

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan J. S., Coligan J. E., Barin F., McLane M. F., Sodroski J. G., Rosen C. A., Haseltine W. A., Lee T. H., Essex M. Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science. 1985 May 31;228(4703):1091–1094. doi: 10.1126/science.2986290. [DOI] [PubMed] [Google Scholar]
  2. Baba M., Pauwels R., Balzarini J., Arnout J., Desmyter J., De Clercq E. Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6132–6136. doi: 10.1073/pnas.85.16.6132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baeuerle P. A., Huttner W. B. Chlorate--a potent inhibitor of protein sulfation in intact cells. Biochem Biophys Res Commun. 1986 Dec 15;141(2):870–877. doi: 10.1016/s0006-291x(86)80253-4. [DOI] [PubMed] [Google Scholar]
  4. Bagasra O., Whittle P., Heins B., Pomerantz R. J. Anti-human immunodeficiency virus type 1 activity of sulfated monosaccharides: comparison with sulfated polysaccharides and other polyions. J Infect Dis. 1991 Dec;164(6):1082–1090. doi: 10.1093/infdis/164.6.1082. [DOI] [PubMed] [Google Scholar]
  5. Chege N. W., Pfeffer S. R. Compartmentation of the Golgi complex: brefeldin-A distinguishes trans-Golgi cisternae from the trans-Golgi network. J Cell Biol. 1990 Sep;111(3):893–899. doi: 10.1083/jcb.111.3.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cranage M. P., Ashworth L. A., Greenaway P. J., Murphey-Corb M., Desrosiers R. C. AIDS vaccine developments. Nature. 1992 Feb 20;355(6362):685–686. doi: 10.1038/355685a0. [DOI] [PubMed] [Google Scholar]
  7. Dewar R. L., Vasudevachari M. B., Natarajan V., Salzman N. P. Biosynthesis and processing of human immunodeficiency virus type 1 envelope glycoproteins: effects of monensin on glycosylation and transport. J Virol. 1989 Jun;63(6):2452–2456. doi: 10.1128/jvi.63.6.2452-2456.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Downie J. C. Host antigen as the sulphated moiety of influenza virus haemagglutinin. J Gen Virol. 1978 Nov;41(2):283–293. doi: 10.1099/0022-1317-41-2-283. [DOI] [PubMed] [Google Scholar]
  9. Earl P. L., Moss B., Doms R. W. Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein. J Virol. 1991 Apr;65(4):2047–2055. doi: 10.1128/jvi.65.4.2047-2055.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujiwara T., Oda K., Yokota S., Takatsuki A., Ikehara Y. Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem. 1988 Dec 5;263(34):18545–18552. [PubMed] [Google Scholar]
  11. Gallo R. C., Salahuddin S. Z., Popovic M., Shearer G. M., Kaplan M., Haynes B. F., Palker T. J., Redfield R., Oleske J., Safai B. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science. 1984 May 4;224(4648):500–503. doi: 10.1126/science.6200936. [DOI] [PubMed] [Google Scholar]
  12. Geyer H., Holschbach C., Hunsmann G., Schneider J. Carbohydrates of human immunodeficiency virus. Structures of oligosaccharides linked to the envelope glycoprotein 120. J Biol Chem. 1988 Aug 25;263(24):11760–11767. [PubMed] [Google Scholar]
  13. Heifetz A., Prager M. D. The effect of butyrate on sulfated glycoprotein biosynthesis by human kidney tumor cells. J Biol Chem. 1981 Jul 10;256(13):6529–6532. [PubMed] [Google Scholar]
  14. Heifetz A., Watson C., Johnson A. R., Roberts M. K. Sulfated glycoproteins secreted by human vascular endothelial cells. J Biol Chem. 1982 Nov 25;257(22):13581–13586. [PubMed] [Google Scholar]
  15. Hope R. G., Palfreyman J., Suh M., Marsden H. S. Sulphated glycoproteins induced by herpes simplex virus. J Gen Virol. 1982 Feb;58(Pt 2):399–415. doi: 10.1099/0022-1317-58-2-399. [DOI] [PubMed] [Google Scholar]
  16. Huttner W. B. Tyrosine sulfation and the secretory pathway. Annu Rev Physiol. 1988;50:363–376. doi: 10.1146/annurev.ph.50.030188.002051. [DOI] [PubMed] [Google Scholar]
  17. Jackson D. C., Dopheide T. A., Russell R. J., White D. O., Ward C. W. Antigenic determinants of influenza virus hemagglutinin. II. Antigenic reactivity of the isolated N-terminal cyanogen bromide peptide of A/Memphis/72 hemagglutinin heavy chain. Virology. 1979 Mar;93(2):458–465. doi: 10.1016/0042-6822(79)90249-6. [DOI] [PubMed] [Google Scholar]
  18. Lasky L. A., Groopman J. E., Fennie C. W., Benz P. M., Capon D. J., Dowbenko D. J., Nakamura G. R., Nunes W. M., Renz M. E., Berman P. W. Neutralization of the AIDS retrovirus by antibodies to a recombinant envelope glycoprotein. Science. 1986 Jul 11;233(4760):209–212. doi: 10.1126/science.3014647. [DOI] [PubMed] [Google Scholar]
  19. Laver W. G., Webster R. G. The structure of influenza viruses. IV. Chemical studies of the host antigen. Virology. 1966 Sep;30(1):104–115. doi: 10.1016/s0042-6822(66)81014-0. [DOI] [PubMed] [Google Scholar]
  20. Le Grand R., Vaslin B., Vogt G., Roques P., Humbert M., Dormont D. AIDS vaccine developments. Nature. 1992 Feb 20;355(6362):684–684. doi: 10.1038/355684a0. [DOI] [PubMed] [Google Scholar]
  21. Levy J. A., Hoffman A. D., Kramer S. M., Landis J. A., Shimabukuro J. M., Oshiro L. S. Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science. 1984 Aug 24;225(4664):840–842. doi: 10.1126/science.6206563. [DOI] [PubMed] [Google Scholar]
  22. Ludlow J. W., Consigli R. A. Polyomavirus major capsid protein VP1 is modified by tyrosine sulfuration. J Virol. 1987 May;61(5):1708–1711. doi: 10.1128/jvi.61.5.1708-1711.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Matthews T. J., Weinhold K. J., Lyerly H. K., Langlois A. J., Wigzell H., Bolognesi D. P. Interaction between the human T-cell lymphotropic virus type IIIB envelope glycoprotein gp120 and the surface antigen CD4: role of carbohydrate in binding and cell fusion. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5424–5428. doi: 10.1073/pnas.84.15.5424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McDougal J. S., Nicholson J. K., Cross G. D., Cort S. P., Kennedy M. S., Mawle A. C. Binding of the human retrovirus HTLV-III/LAV/ARV/HIV to the CD4 (T4) molecule: conformation dependence, epitope mapping, antibody inhibition, and potential for idiotypic mimicry. J Immunol. 1986 Nov 1;137(9):2937–2944. [PubMed] [Google Scholar]
  25. Merkle R. K., Elbein A. D., Heifetz A. The effect of swainsonine and castanospermine on the sulfation of the oligosaccharide chains of N-linked glycoproteins. J Biol Chem. 1985 Jan 25;260(2):1083–1089. [PubMed] [Google Scholar]
  26. Mulligan M. J., Kumar P., Hui H. X., Owens R. J., Ritter G. D., Jr, Hahn B. H., Compans R. W. The env protein of an infectious noncytopathic HIV-2 is deficient in syncytium formation. AIDS Res Hum Retroviruses. 1990 Jun;6(6):707–720. doi: 10.1089/aid.1990.6.707. [DOI] [PubMed] [Google Scholar]
  27. Mulligan M. J., Ritter G. D., Jr, Chaikin M. A., Yamshchikov G. V., Kumar P., Hahn B. H., Sweet R. W., Compans R. W. Human immunodeficiency virus type 2 envelope glycoprotein: differential CD4 interactions of soluble gp120 versus the assembled envelope complex. Virology. 1992 Mar;187(1):233–241. doi: 10.1016/0042-6822(92)90311-c. [DOI] [PubMed] [Google Scholar]
  28. Osterhaus A., de Vries P., Heeney J. AIDS vaccine developments. Nature. 1992 Feb 20;355(6362):684–685. doi: 10.1038/355684b0. [DOI] [PubMed] [Google Scholar]
  29. Pal R., Mumbauer S., Hoke G. M., Takatsuki A., Sarngadharan M. G. Brefeldin A inhibits the processing and secretion of envelope glycoproteins of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses. 1991 Aug;7(8):707–712. doi: 10.1089/aid.1991.7.707. [DOI] [PubMed] [Google Scholar]
  30. Pinter A., Compans R. W. Sulfated components of enveloped viruses. J Virol. 1975 Oct;16(4):859–866. doi: 10.1128/jvi.16.4.859-866.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Popovic M., Sarngadharan M. G., Read E., Gallo R. C. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984 May 4;224(4648):497–500. doi: 10.1126/science.6200935. [DOI] [PubMed] [Google Scholar]
  32. Prehm P., Scheid A., Choppin P. W. The carbohydrate structure of the glycoproteins of the paramyxovirus SV5 grown in bovine kidney cells. J Biol Chem. 1979 Oct 10;254(19):9669–9677. [PubMed] [Google Scholar]
  33. Putney S. D., Matthews T. J., Robey W. G., Lynn D. L., Robert-Guroff M., Mueller W. T., Langlois A. J., Ghrayeb J., Petteway S. R., Jr, Weinhold K. J. HTLV-III/LAV-neutralizing antibodies to an E. coli-produced fragment of the virus envelope. Science. 1986 Dec 12;234(4782):1392–1395. doi: 10.1126/science.2431482. [DOI] [PubMed] [Google Scholar]
  34. Robey W. G., Arthur L. O., Matthews T. J., Langlois A., Copeland T. D., Lerche N. W., Oroszlan S., Bolognesi D. P., Gilden R. V., Fischinger P. J. Prospect for prevention of human immunodeficiency virus infection: purified 120-kDa envelope glycoprotein induces neutralizing antibody. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7023–7027. doi: 10.1073/pnas.83.18.7023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Robey W. G., Safai B., Oroszlan S., Arthur L. O., Gonda M. A., Gallo R. C., Fischinger P. J. Characterization of envelope and core structural gene products of HTLV-III with sera from AIDS patients. Science. 1985 May 3;228(4699):593–595. doi: 10.1126/science.2984774. [DOI] [PubMed] [Google Scholar]
  36. Schneider J., Kaaden O., Copeland T. D., Oroszlan S., Hunsmann G. Shedding and interspecies type sero-reactivity of the envelope glycopolypeptide gp120 of the human immunodeficiency virus. J Gen Virol. 1986 Nov;67(Pt 11):2533–2538. doi: 10.1099/0022-1317-67-11-2533. [DOI] [PubMed] [Google Scholar]
  37. Smith C. W., Pritchard K., Marston S. B. The mechanism of Ca2+ regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin. J Biol Chem. 1987 Jan 5;262(1):116–122. [PubMed] [Google Scholar]
  38. Spiro R. C., Freeze H. H., Sampath D., Garcia J. A. Uncoupling of chondroitin sulfate glycosaminoglycan synthesis by brefeldin A. J Cell Biol. 1991 Dec;115(5):1463–1473. doi: 10.1083/jcb.115.5.1463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stein B. S., Engleman E. G. Intracellular processing of the gp160 HIV-1 envelope precursor. Endoproteolytic cleavage occurs in a cis or medial compartment of the Golgi complex. J Biol Chem. 1990 Feb 15;265(5):2640–2649. [PubMed] [Google Scholar]
  40. Stein B. S., Gowda S. D., Lifson J. D., Penhallow R. C., Bensch K. G., Engleman E. G. pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell. 1987 Jun 5;49(5):659–668. doi: 10.1016/0092-8674(87)90542-3. [DOI] [PubMed] [Google Scholar]
  41. Stott E. J. Anti-cell antibody in macaques. Nature. 1991 Oct 3;353(6343):393–393. doi: 10.1038/353393a0. [DOI] [PubMed] [Google Scholar]
  42. Veronese F. D., DeVico A. L., Copeland T. D., Oroszlan S., Gallo R. C., Sarngadharan M. G. Characterization of gp41 as the transmembrane protein coded by the HTLV-III/LAV envelope gene. Science. 1985 Sep 27;229(4720):1402–1405. doi: 10.1126/science.2994223. [DOI] [PubMed] [Google Scholar]
  43. Willey R. L., Bonifacino J. S., Potts B. J., Martin M. A., Klausner R. D. Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9580–9584. doi: 10.1073/pnas.85.24.9580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yamashita K., Ueda I., Kobata A. Sulfated asparagine-linked sugar chains of hen egg albumin. J Biol Chem. 1983 Dec 10;258(23):14144–14147. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES