Abstract
A β-glucosidase (EC 3.2.1.21) from the fungus Aspergillus terreus was purified to homogeneity as indicated by disc acrylamide gel electrophoresis. Optimal activity was observed at pH 4.8 and 50°C. The β-glucosidase had Km values of 0.78 and 0.40 mM for p-nitrophenyl-β-d-glucopyranoside and cellobiose, respectively. Glucose was a competitive inhibitor, with a Ki of 3.5 mM when p-nitrophenyl-β-d-glucopyranoside was used as the substrate. The specific activity of the enzyme was found to be 210 IU and 215 U per mg of protein on p-nitrophenyl-β-d-glucopyranoside and cellobiose substrates, respectively. Cations, proteases, and enzyme inhibitors had little or no effect on the enzyme activity. The β-glucosidase was found to be a glycoprotein containing 65% carbohydrate by weight. It had a Stokes radius of 5.9 nm and an approximate molecular weight of 275,000. The affinity and specific activity that the isolated β-glucosidase exhibited for cellobiose compared favorably with the values obtained for β-glucosidases from other organisms being studied for use in industrial cellulose saccharification.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aït N., Creuzet N., Cattanéo J. Characterization and purification of thermostable beta-glucosidase from Clostridium thermocellum. Biochem Biophys Res Commun. 1979 Sep 27;90(2):537–546. doi: 10.1016/0006-291x(79)91269-5. [DOI] [PubMed] [Google Scholar]
- Bissett F., Sternberg D. Immobilization of Aspergillus beta-glucosidase on chitosan. Appl Environ Microbiol. 1978 Apr;35(4):750–755. doi: 10.1128/aem.35.4.750-755.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brewer J. M., Ashworth R. B. Disc electrophoresis. J Chem Educ. 1969 Jan;46(1):41–45. doi: 10.1021/ed046p41. [DOI] [PubMed] [Google Scholar]
- DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gong C. S., Chen L. F., Tsao G. T. Affinity chromatography of endoglucanase of Trichoderma viride by concanavalin A-agarose. Biotechnol Bioeng. 1979 Feb;21(2):167–171. doi: 10.1002/bit.260210203. [DOI] [PubMed] [Google Scholar]
- Han Y. W., Srinivasan V. R. Purification and characterization of beta-glucosidase of Alcaligenes faecalis. J Bacteriol. 1969 Dec;100(3):1355–1363. doi: 10.1128/jb.100.3.1355-1363.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hägerdal B., Harris H., Pye E. K. Association of beta-glucosidase with intact cells of Thermoactinomyces. Biotechnol Bioeng. 1979 Mar;21(3):345–355. doi: 10.1002/bit.260210302. [DOI] [PubMed] [Google Scholar]
- Inglin M., Feinberg B. A., Loewenberg J. R. Partial purification and characterization of a new intracellular beta-glucosidase of Trichoderma reesei. Biochem J. 1980 Feb 1;185(2):515–519. doi: 10.1042/bj1850515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leach B. S., Collawn J. F., Jr, Fish W. W. Behavior of glycopolypeptides with empirical molecular weight estimation methods. 1. In sodium dodecyl sulfate. Biochemistry. 1980 Dec 9;19(25):5734–5741. doi: 10.1021/bi00566a011. [DOI] [PubMed] [Google Scholar]
- Legler G. Untersuchungen zum Wirkungsmechanismus glykosidspaltender Enzyme, II. Isolierung und enzymatische Eigenschaften von zwei beta-Glucosidasen aus Aspergillus wentii. Hoppe Seylers Z Physiol Chem. 1967 Nov;348(11):1359–1366. [PubMed] [Google Scholar]
- Peitersen N., Medeiros J., Mandels M. Adsorption of Trichoderma cellulase on cellulose. Biotechnol Bioeng. 1977 Jul;19(7):1091–1094. doi: 10.1002/bit.260190710. [DOI] [PubMed] [Google Scholar]
- Rudick M. J., Elbein A. D. Glycoprotein enzymes secreted by Aspergillus fumigatus. Purification and properties of beta-glucosidase. J Biol Chem. 1973 Sep 25;248(18):6506–6513. [PubMed] [Google Scholar]
- Rudick M. J., Elbein A. D. Glycoprotein enzymes secreted by Aspergillus fumigatus: purification and properties of a second beta-glucosidase. J Bacteriol. 1975 Oct;124(1):534–541. doi: 10.1128/jb.124.1.534-541.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sadana J. C., Shewale J. G., Deshpande M. V. High Cellobiase and Xylanase Production by Sclerotium rolfsii UV-8 Mutant in Submerged Culture. Appl Environ Microbiol. 1980 Apr;39(4):935–936. doi: 10.1128/aem.39.4.935-936.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith M. H., Gold M. H. Phanerochaete chrysosporium beta-Glucosidases: Induction, Cellular Localization, and Physical Characterization. Appl Environ Microbiol. 1979 May;37(5):938–942. doi: 10.1128/aem.37.5.938-942.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sternberg D. Beta-glucosidase of Trichoderma: its biosynthesis and role in saccharification of cellulose. Appl Environ Microbiol. 1976 May;31(5):648–654. doi: 10.1128/aem.31.5.648-654.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sternberg D., Vijayakumar P., Reese E. T. beta-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can J Microbiol. 1977 Feb;23(2):139–147. doi: 10.1139/m77-020. [DOI] [PubMed] [Google Scholar]
- Umezurike G. M. The purification and properties of extracellular beta-glucosidase from Botryodiplodia theobromae Pat. Biochim Biophys Acta. 1971 Feb 10;227(2):419–428. doi: 10.1016/0005-2744(71)90073-8. [DOI] [PubMed] [Google Scholar]
- Wood T. M. Properties and mode of action of cellulases. Biotechnol Bioeng Symp. 1975;(5):111–133. [PubMed] [Google Scholar]
- de Gussem R. L., Aerts G. M., Claeyssens M., de Bruyne C. K. Purification and properties of an induced beta-D-glucosidase from stachybotrys atra. Biochim Biophys Acta. 1978 Jul 7;525(1):142–153. doi: 10.1016/0005-2744(78)90208-5. [DOI] [PubMed] [Google Scholar]