Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1983 Apr;45(4):1411–1414. doi: 10.1128/aem.45.4.1411-1414.1983

Pathways of Propionate Degradation by Enriched Methanogenic Cultures

Markus Koch 1,, Jan Dolfing 1,, Karl Wuhrmann 1, Alexander J B Zehnder 1,
PMCID: PMC242473  PMID: 16346281

Abstract

A mixed methanogenic culture was highly enriched in a growth medium containing propionate as the sole organic carbon and energy source. With this culture, the pathways of propionate degradation were studied by use of 14C-radiotracers. Propionate was first metabolized to acetate, carbon dioxide, and hydrogen by nonmethanogenic organisms. Formate was not excreted. The carbon dioxide originated exclusively from the carboxyl group of propionate, whereas both [2-14C]- and [3-14C]propionate lead to the production of radioactive acetate. The methyl and carboxyl groups of the acetate produced were equally labeled, regardless of whether [2-14C]- or [3-14C]propionate was used. These observations suggest that in the culture, propionate was degraded through a randomizing pathway.

Full text

PDF
1414

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boone D. R., Bryant M. P. Propionate-Degrading Bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from Methanogenic Ecosystems. Appl Environ Microbiol. 1980 Sep;40(3):626–632. doi: 10.1128/aem.40.3.626-632.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. KAZIRO Y., OCHOA S. THE METABOLISM OF PROPIONIC ACID. Adv Enzymol Relat Areas Mol Biol. 1964;26:283–378. doi: 10.1002/9780470122716.ch7. [DOI] [PubMed] [Google Scholar]
  3. Kaspar H. F., Wuhrmann K. Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl Environ Microbiol. 1978 Jul;36(1):1–7. doi: 10.1128/aem.36.1.1-7.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kay W. W. Genetic control of the metabolism of propionate by Escherichia coli K12. Biochim Biophys Acta. 1972 May 16;264(3):508–521. doi: 10.1016/0304-4165(72)90014-1. [DOI] [PubMed] [Google Scholar]
  5. Miller T. L., Wolin M. J. Fermentations by saccharolytic intestinal bacteria. Am J Clin Nutr. 1979 Jan;32(1):164–172. doi: 10.1093/ajcn/32.1.164. [DOI] [PubMed] [Google Scholar]
  6. STADTMAN T. C., BARKER H. A. Studies on the methane fermentation. VIII. Tracer experiments of fatty acid oxidation by methane bacteria. J Bacteriol. 1951 Jan;61(1):67–80. doi: 10.1128/jb.61.1.67-80.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. WOLIN E. A., WOLIN M. J., WOLFE R. S. FORMATION OF METHANE BY BACTERIAL EXTRACTS. J Biol Chem. 1963 Aug;238:2882–2886. [PubMed] [Google Scholar]
  9. Zehnder A. J., Brock T. D. Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol. 1979 Jan;137(1):420–432. doi: 10.1128/jb.137.1.420-432.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Zehnder A. J., Huser B. A., Brock T. D., Wuhrmann K. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch Microbiol. 1980 Jan;124(1):1–11. doi: 10.1007/BF00407022. [DOI] [PubMed] [Google Scholar]
  11. Zehnder A. J., Huser B., Brock T. D. Measuring radioactive methane with the liquid scintillation counter. Appl Environ Microbiol. 1979 May;37(5):897–899. doi: 10.1128/aem.37.5.897-899.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES