Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1983 May;45(5):1474–1480. doi: 10.1128/aem.45.5.1474-1480.1983

Entrainment of Viruses from Septic Tank Leach Fields Through a Shallow, Sandy Soil Aquifer

James M Vaughn 1, Edward F Landry 1, McHarrell Z Thomas 1
PMCID: PMC242487  PMID: 16346286

Abstract

A study was conducted which focused on movement of naturally occurring human enteroviruses from a subsurface wastewater disposal system through a shallow aquifer. The potential for significant entrainment of virus particles was evidenced by their recovery at down-gradient distances of 67.05 m and from aquifer depths of 18 m. A significant negative correlation was observed between virus occurrence and the distance from the “septage” (leaching pool) source. Virus occurrence could not be statistically correlated with either total or fecal coliforms, indicating the limitations of current microbial water quality indicators for predicting the virological quality of groundwater.

Full text

PDF
1479

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Katzenelson E., Fattal B., Hostovesky T. Organic flocculation: an efficient second-step concentration method for the detection of viruses in tap water. Appl Environ Microbiol. 1976 Oct;32(4):638–639. doi: 10.1128/aem.32.4.638-639.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Landry E. F., Vaughn J. M., Thomas M. Z., Vicale T. J. Efficiency of beef extract for the recovery of poliovirus from wastewater effluents. Appl Environ Microbiol. 1978 Oct;36(4):544–548. doi: 10.1128/aem.36.4.544-548.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Mack W. N., Lu Y. S., Coohon D. B. Isolation of poliomyelitis virus from a contaminated well. Health Serv Rep. 1972 Mar;87(3):271–274. [PMC free article] [PubMed] [Google Scholar]
  4. Schaub S. A., Sorber C. A. Virus and bacteria removal from wastewater by rapid infiltration through soil. Appl Environ Microbiol. 1977 Mar;33(3):609–619. doi: 10.1128/aem.33.3.609-619.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Vaughn J. M., Landry E. F., Baranosky L. J., Beckwith C. A., Dahl M. C., Delihas N. C. Survey of human virus occurrence in wastewater-recharged groundwater on Long Island. Appl Environ Microbiol. 1978 Jul;36(1):47–51. doi: 10.1128/aem.36.1.47-51.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Wellings F. M., Lewis A. L., Mountain C. W., Pierce L. V. Demonstration of virus in groundwater after effluent discharge onto soil. Appl Microbiol. 1975 Jun;29(6):751–757. doi: 10.1128/am.29.6.751-757.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES