Abstract
The presence of atherosclerotic lesions in young adults suggests that early stages of atherogenesis occur during childhood. The relationship of intimal lesions in childhood to fully developed atherosclerosis is briefly discussed. Factors likely to promote lipid accumulation within the arterial wall and proliferation of connective tissue elements are reviewed with particular emphasis on endothelial cell injury and the possible consequences of this for intimal smooth muscle cell proliferation.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asmussen I., Kjeldsen K. Intimal ultrastructure of human umbilical arteries. Observations on arteries from newborn children of smoking and nonsmoking mothers. Circ Res. 1975 May;36(5):579–589. doi: 10.1161/01.res.36.5.579. [DOI] [PubMed] [Google Scholar]
- Benditt E. P., Benditt J. M. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1753–1756. doi: 10.1073/pnas.70.6.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benditt E. P. Implications of the monoclonal character of human atherosclerotic plaques. Am J Pathol. 1977 Mar;86(3):693–702. [PMC free article] [PubMed] [Google Scholar]
- Caplan B. A., Schwartz C. J. Increased endothelial cell turnover in areas of in vivo Evans Blue uptake in the pig aorta. Atherosclerosis. 1973 May-Jun;17(3):401–417. doi: 10.1016/0021-9150(73)90031-2. [DOI] [PubMed] [Google Scholar]
- Caro C. G., Fitz-Gerald J. M., Schroter R. C. Arterial wall shear and distribution of early atheroma in man. Nature. 1969 Sep 13;223(5211):1159–1160. doi: 10.1038/2231159a0. [DOI] [PubMed] [Google Scholar]
- Dayton S., Hashimoto S. Movement of labeled cholesterol between plasma lipoprotein and normal arterial wall across the intimal surface. Circ Res. 1966 Dec;19(6):1041–1049. doi: 10.1161/01.res.19.6.1041. [DOI] [PubMed] [Google Scholar]
- FIELD H., Jr, SWELL L., SCHOOLS P. E., Jr, TREADWELL C. R. Dynamic aspects of cholesterol metabolism in different areas of the aorta and other tissues in man and their relationship to atherosclerosis. Circulation. 1960 Oct;22:547–558. doi: 10.1161/01.cir.22.4.547. [DOI] [PubMed] [Google Scholar]
- Geer J. C., Malcom G. T. Cholesterol ester fatty acid composition of human aorta fatty streaks and normal intima. Exp Mol Pathol. 1965 Oct;4(5):500–507. doi: 10.1016/0014-4800(65)90014-6. [DOI] [PubMed] [Google Scholar]
- Harker L. A., Ross R., Slichter S. J., Scott C. R. Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest. 1976 Sep;58(3):731–741. doi: 10.1172/JCI108520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harker L. A., Slichter S. J., Scott C. R., Ross R. Homocystinemia. Vascular injury and arterial thrombosis. N Engl J Med. 1974 Sep 12;291(11):537–543. doi: 10.1056/NEJM197409122911101. [DOI] [PubMed] [Google Scholar]
- Haust M. D. The morphogenesis and fate of potential and early atherosclerotic lesions in man. Hum Pathol. 1971 Mar;2(1):1–29. doi: 10.1016/s0046-8177(71)80019-9. [DOI] [PubMed] [Google Scholar]
- LYON M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961 Apr 22;190:372–373. doi: 10.1038/190372a0. [DOI] [PubMed] [Google Scholar]
- MOON H. D. Coronary arteries in fetuses, infants, and juveniles. Circulation. 1957 Aug;16(2):263–267. doi: 10.1161/01.cir.16.2.263. [DOI] [PubMed] [Google Scholar]
- McCullagh K. A., Balian G. Collagen characterisation and cell transformation in human atherosclerosis. Nature. 1975 Nov 6;258(5530):73–75. doi: 10.1038/258073a0. [DOI] [PubMed] [Google Scholar]
- NEUFELD H. N., WAGENVOORT C. A., EDWARDS J. E. Coronary arteries in fetuses, infants, juveniles, and young adults. Lab Invest. 1962 Oct;11:837–844. [PubMed] [Google Scholar]
- Pearson T. A., Kramer E. C., Solez K., Heptinstall R. H. The human atherosclerotic plaque. Am J Pathol. 1977 Mar;86(3):657–664. [PMC free article] [PubMed] [Google Scholar]
- Pearson T. A., Wang B. A., Solez K., Heptinstall R. H. Clonal characteristics of fibrous plaques and fatty streaks from human aortas. Am J Pathol. 1975 Nov;81(2):379–387. [PMC free article] [PubMed] [Google Scholar]
- Robinson C. W., Jr, Kress S. C., Wagner R. H., Brinkhous K. M. Platelet agglutination and deagglutination with a sulfhydryl inhibitor, methyl mercuric nitrate: relationships to platelet ATPase. Exp Mol Pathol. 1965 Oct;4(5):457–464. doi: 10.1016/0014-4800(65)90010-9. [DOI] [PubMed] [Google Scholar]
- Ross R., Glomset J. A. The pathogenesis of atherosclerosis (first of two parts). N Engl J Med. 1976 Aug 12;295(7):369–377. doi: 10.1056/NEJM197608122950707. [DOI] [PubMed] [Google Scholar]
- Ross R., Glomset J., Harker L. Response to injury and atherogenesis. Am J Pathol. 1977 Mar;86(3):675–684. [PMC free article] [PubMed] [Google Scholar]
- Rutherford R. B., Ross R. Platelet factors stimulate fibroblasts and smooth muscle cells quiescent in plasma serum to proliferate. J Cell Biol. 1976 Apr;69(1):196–203. doi: 10.1083/jcb.69.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinzinger H., Feigl W., Dadak C., Holzner J. H. Intimal alterations of the aorta and the great arteries of newborn and children. Pathol Microbiol (Basel) 1975;43(2-O):129–133. doi: 10.1159/000162807. [DOI] [PubMed] [Google Scholar]
- Smith E. B., Evans P. H., Downham M. D. Lipid in the aortic intima. The correlation of morphological and chemical characteristics. J Atheroscler Res. 1967 Mar-Apr;7(2):171–186. doi: 10.1016/s0368-1319(67)80079-6. [DOI] [PubMed] [Google Scholar]
- Smith E. B., Slater R. S. Relationship between low-density lipoprotein in aortic intima and serum-lipid levels. Lancet. 1972 Feb 26;1(7748):463–469. doi: 10.1016/s0140-6736(72)90122-5. [DOI] [PubMed] [Google Scholar]
- Smith E. Development of the atheromatous lesion. Overview. Adv Exp Med Biol. 1975;57:254–326. doi: 10.1007/978-1-4613-4476-6_4. [DOI] [PubMed] [Google Scholar]
- Somer J. B., Schwartz C. J. Focal 3 H-cholesterol uptake in the pig aorta. Atherosclerosis. 1971 May-Jun;13(3):293–304. doi: 10.1016/0021-9150(71)90073-6. [DOI] [PubMed] [Google Scholar]
- Vlodaver Z., Kahn H. A., Neufeld H. N. The coronary arteries in early life in three different ethnic groups. Circulation. 1969 Apr;39(4):541–550. doi: 10.1161/01.cir.39.4.541. [DOI] [PubMed] [Google Scholar]
- Walton K. W., Williamson N. Histological and immunofluorescent studies on the evolution of the human atheromatous plaque. J Atheroscler Res. 1968 Jul-Aug;8(4):599–624. doi: 10.1016/s0368-1319(68)80020-1. [DOI] [PubMed] [Google Scholar]
- Wight T. N., Ross R. Proteoglycans in primate arteries. II. Synthesis and secretion of glycosaminoglycans by arterial smooth muscle cells in culture. J Cell Biol. 1975 Dec;67(3):675–686. doi: 10.1083/jcb.67.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woolf N., Bradley J. W., Crawford T., Carstairs K. C. Experimental mural thrombi in the pig aorta. The early natural history. Br J Exp Pathol. 1968 Jun;49(3):257–264. [PMC free article] [PubMed] [Google Scholar]
- Zee P. Lipid metabolism in the newborn. II. Neutral lipids. Pediatrics. 1968 Mar;41(3):640–645. [PubMed] [Google Scholar]

