Abstract
Since pyrethroids are potent neuropoisons, their mechanism of action on the nervous system can best be studied by means of electrophysiological techniques. The nerve excitation occurs as a result of changes in nerve membrane permeabilities to sodium and potassium ions, and therefore any effect of pyrethroids can be interpreted in terms of such permeabilities. Detailed analyses of the action of allethrin on the giant axons of the cockroach, the crayfish, and the squid performed by means of intracellular microelectrode and voltage clamp methods have revealed the ionic basis of the action of allethrin on the nerve.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berteau P. E., Casida J. E., Narahashi T. Pyrethroid-like biological activity of compounds lacking cyclopropane and ester groupings. Science. 1968 Sep 13;161(3846):1151–1153. doi: 10.1126/science.161.3846.1151. [DOI] [PubMed] [Google Scholar]
- CHAMBERLAIN R. W. An investigation on the action of piperonyl butoxide with pyrethrum. Am J Hyg. 1950 Sep;52(2):153–183. doi: 10.1093/oxfordjournals.aje.a119416. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. doi: 10.1113/jphysiol.1952.sp004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F., KATZ B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):424–448. doi: 10.1113/jphysiol.1952.sp004716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. The components of membrane conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):473–496. doi: 10.1113/jphysiol.1952.sp004718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L. Ionic movements and electrical activity in giant nerve fibres. Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):1–37. doi: 10.1098/rspb.1958.0001. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. Active transport of cations in giant axons from Sepia and Loligo. J Physiol. 1955 Apr 28;128(1):28–60. doi: 10.1113/jphysiol.1955.sp005290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARMONT G. Studies on the axon membrane; a new method. J Cell Physiol. 1949 Dec;34(3):351–382. doi: 10.1002/jcp.1030340303. [DOI] [PubMed] [Google Scholar]
- NARAHASHI T. Effect of barium ions on membrane potentials of cockroach giant axons. J Physiol. 1961 Apr;156:389–414. doi: 10.1113/jphysiol.1961.sp006683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NARAHASHI T., MOORE J. W., SCOTT W. R. TETRODOTOXIN BLOCKAGE OF SODIUM CONDUCTANCE INCREASE IN LOBSTER GIANT AXONS. J Gen Physiol. 1964 May;47:965–974. doi: 10.1085/jgp.47.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NARAHASHI T. Nature of the negative after-potential increased by the insecticide allethrin in cockroach giant axons. J Cell Comp Physiol. 1962 Feb;59:67–76. doi: 10.1002/jcp.1030590109. [DOI] [PubMed] [Google Scholar]
- Narahashi T., Anderson N. C. Mechanism of excitation block by the insecticide allethrin applied externally and internally to squid giant axons. Toxicol Appl Pharmacol. 1967 May;10(3):529–547. doi: 10.1016/0041-008x(67)90092-0. [DOI] [PubMed] [Google Scholar]