Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1981 May;41(5):1254–1261. doi: 10.1128/aem.41.5.1254-1261.1981

Acidophilic, Heterotrophic Bacteria of Acidic Mine Waters

Paul L Wichlacz 1, Richard F Unz 1
PMCID: PMC243898  PMID: 16345777

Abstract

Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and oxidase positive, strictly aerobic, and capable of growth on citric acid. The bacteria were cultivatable on solid nutrient media only if agarose was employed as the hardening agent. Bacterial densities in natural mine waters ranged from approximately 20 to 250 cells per ml, depending upon source and culture medium. Ferric hydrates and stream vegetation contained from 1,500 to over 7 × 106 cells per g.

Full text

PDF
1256

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belly R. T., Brock T. D. Ecology of iron-oxidizing bacteria in pyritic materials associated with coal. J Bacteriol. 1974 Feb;117(2):726–732. doi: 10.1128/jb.117.2.726-732.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belly R. T., Brock T. D. Widespread occurrence of acidophilic strains of Bacillus coagulans in hot springs. J Appl Bacteriol. 1974 Mar;37(1):175–177. doi: 10.1111/j.1365-2672.1974.tb00427.x. [DOI] [PubMed] [Google Scholar]
  3. Båth E., Lundgren B., Söderström B. Effects of artificial acid rain on microbial activity and biomass. Bull Environ Contam Toxicol. 1979 Dec;23(6):737–740. doi: 10.1007/BF01770034. [DOI] [PubMed] [Google Scholar]
  4. DEIBEL R. H., EVANS J. B. Modified benzidine test for the detection of cytochrome-containing respiratory systems in microorganisms. J Bacteriol. 1960 Mar;79:356–360. doi: 10.1128/jb.79.3.356-360.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dugan P. R., MacMillan C. B., Pfister R. M. Aerobic heterotrophic bacteria indigenous to pH 2.8 acid mine water: predominant slime-producing bacteria in acid streamers. J Bacteriol. 1970 Mar;101(3):982–988. doi: 10.1128/jb.101.3.982-988.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guay R., Silver M. Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics. Can J Microbiol. 1975 Mar;21(3):281–288. doi: 10.1139/m75-040. [DOI] [PubMed] [Google Scholar]
  7. Harrison A. P., Jr, Jarvis B. W., Johnson J. L. Heterotrophic bacteria from cultures of autotrophic Thiobacillus ferrooxidans: relationships as studied by means of deoxyribonucleic acid homology. J Bacteriol. 1980 Jul;143(1):448–454. doi: 10.1128/jb.143.1.448-454.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harrison A. P., Jr Microbial succession and mineral leaching in an artificial coal spoil. Appl Environ Microbiol. 1978 Dec;36(6):861–869. doi: 10.1128/aem.36.6.861-869.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Manning H. L. New medium for isolating iron-oxidizing and heterotrophic acidophilic bacteria from acid mine drainage. Appl Microbiol. 1975 Dec;30(6):1010–1016. doi: 10.1128/am.30.6.1010-1016.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Shafia F., Wilkinson R. F., Jr Growth of Ferrobacillus ferrooxidans on organic matter. J Bacteriol. 1969 Jan;97(1):256–260. doi: 10.1128/jb.97.1.256-260.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tabita R., Lundgren D. G. Utilization of glucose and the effect of organic compounds on the chemolithotroph Thiobacillus ferrooxidans. J Bacteriol. 1971 Oct;108(1):328–333. doi: 10.1128/jb.108.1.328-333.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tuttle J. H., Randles C. I., Dugan P. R. Activity of microorganisms in acid mine water. I. Influence of acid water on aerobic heterotrophs of a normal stream. J Bacteriol. 1968 May;95(5):1495–1503. doi: 10.1128/jb.95.5.1495-1503.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES