Abstract
Rational composting process control involves the interrelated factors of heat output, temperature, ventilation, and water removal. The heat is released microbially at the expense of organic material; temperature is an effect and, because it is a determinant of microbial activity, it is also a cause of heat output; ventilation supplies oxygen and removes heat, mainly through the vaporization of water; water removal results from heat removal. These relationships were implemented in a field-scale process of static-pile configuration, using a mixture of sewage sludge and wood chips. Heat removal was matched to heat output through a temperature feedback control system, thereby maintaining biologically favorable temperatures. The observations indicate that fundamentally there are two kinds of composting systems: those that are and those that are not temperature self-limiting. The self-limiting system reaches inhibitive temperatures (>60°C) which debilitate the microbial community, suppressing decomposition, heat output, and water removal. In contrast, non-self-limiting temperatures (<60°C) support a robust community, promoting decomposition, heat output, and water removal.
Full text
PDF![1321](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/682d/243918/f0894dbc9e35/aem00199-0043.png)
![1322](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/682d/243918/3c3cda2e6d7e/aem00199-0044.png)
![1323](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/682d/243918/9464493fffb9/aem00199-0045.png)
![1324](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/682d/243918/ba32240ecf6d/aem00199-0046.png)
![1325](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/682d/243918/454d7733ae89/aem00199-0047.png)
![1326](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/682d/243918/2934ee55f0d3/aem00199-0048.png)
![1327](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/682d/243918/5fd5e861c7a7/aem00199-0049.png)
![1328](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/682d/243918/2a4b188afe35/aem00199-0050.png)
![1329](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/682d/243918/f6eeadb40b5f/aem00199-0051.png)
![1330](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/682d/243918/6acae0f7d5e7/aem00199-0052.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carlyle R. E., Norman A. G. Microbial Thermogenesis in the Decomposition of Plant Materials: Part II. Factors Involved. J Bacteriol. 1941 Jun;41(6):699–724. doi: 10.1128/jb.41.6.699-724.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finstein M. S., Morris M. L. Microbiology of municipal solid waste composting. Adv Appl Microbiol. 1975;19:113–151. doi: 10.1016/s0065-2164(08)70427-1. [DOI] [PubMed] [Google Scholar]
- NIESE G. [Microbiological studies on the problem of selfheating of organic substances]. Arch Mikrobiol. 1959;34:285–318. [PubMed] [Google Scholar]
- ROTHBAUM H. P. Heat output of thermophiles occurring on wool. J Bacteriol. 1961 Feb;81:165–171. doi: 10.1128/jb.81.2.165-171.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suler D. J., Finstein M. S. Effect of Temperature, Aeration, and Moisture on CO(2) Formation in Bench-Scale, Continuously Thermophilic Composting of Solid Waste. Appl Environ Microbiol. 1977 Feb;33(2):345–350. doi: 10.1128/aem.33.2.345-350.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]