Abstract
Conserved hypothetical proteins, i.e. conserved proteins whose functions are still unknown, pose a challenge not just to functional genomics but also to general biology. For many conserved proteins, computational analysis provides only a general prediction of biochemical function; their exact biological functions have to be established through direct experimentation. In the few cases when this has been accomplished, the results were remarkable, revealing the deoxyxylulose pathway and a new essential enzyme, the ITP pyrophosphatase. Comparative genome analysis is also instrumental in illuminating unsolved problems in biology, e.g. the mechanism of FtsZ-independent cell division in Chlamydia, Ureaplasma and Aeropyrum or the role of uncharacterized conserved domains in signal transduction.
Full Text
The Full Text of this article is available as a PDF (82.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aldridge P., Jenal U. Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator. Mol Microbiol. 1999 Apr;32(2):379–391. doi: 10.1046/j.1365-2958.1999.01358.x. [DOI] [PubMed] [Google Scholar]
- Aravind L., Koonin E. V. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J Mol Biol. 1999 Apr 16;287(5):1023–1040. doi: 10.1006/jmbi.1999.2653. [DOI] [PubMed] [Google Scholar]
- Aravind L., Ponting C. P. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci. 1997 Dec;22(12):458–459. doi: 10.1016/s0968-0004(97)01148-1. [DOI] [PubMed] [Google Scholar]
- Aravind L., Ponting C. P. The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett. 1999 Jul 1;176(1):111–116. doi: 10.1111/j.1574-6968.1999.tb13650.x. [DOI] [PubMed] [Google Scholar]
- Arigoni F., Talabot F., Peitsch M., Edgerton M. D., Meldrum E., Allet E., Fish R., Jamotte T., Curchod M. L., Loferer H. A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol. 1998 Sep;16(9):851–856. doi: 10.1038/nbt0998-851. [DOI] [PubMed] [Google Scholar]
- Bork P. Powers and pitfalls in sequence analysis: the 70% hurdle. Genome Res. 2000 Apr;10(4):398–400. doi: 10.1101/gr.10.4.398. [DOI] [PubMed] [Google Scholar]
- Das S., Yu L., Gaitatzes C., Rogers R., Freeman J., Bienkowska J., Adams R. M., Smith T. F., Lindelien J. Biology's new Rosetta stone. Nature. 1997 Jan 2;385(6611):29–30. doi: 10.1038/385029a0. [DOI] [PubMed] [Google Scholar]
- Dunham I. Genomics - the new rock and roll? Trends Genet. 2000 Oct;16(10):456–461. doi: 10.1016/s0168-9525(00)02109-0. [DOI] [PubMed] [Google Scholar]
- Ehrenshaft M., Bilski P., Li M. Y., Chignell C. F., Daub M. E. A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9374–9378. doi: 10.1073/pnas.96.16.9374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galperin M. Y., Grishin N. V. The synthetase domains of cobalamin biosynthesis amidotransferases cobB and cobQ belong to a new family of ATP-dependent amidoligases, related to dethiobiotin synthetase. Proteins. 2000 Nov 1;41(2):238–247. doi: 10.1002/1097-0134(20001101)41:2<238::aid-prot80>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
- Galperin M. Y., Koonin E. V. Searching for drug targets in microbial genomes. Curr Opin Biotechnol. 1999 Dec;10(6):571–578. doi: 10.1016/s0958-1669(99)00035-x. [DOI] [PubMed] [Google Scholar]
- Galperin M. Y., Koonin E. V. Sequence analysis of an exceptionally conserved operon suggests enzymes for a new link between histidine and purine biosynthesis. Mol Microbiol. 1997 Apr;24(2):443–445. doi: 10.1046/j.1365-2958.1997.3671706.x. [DOI] [PubMed] [Google Scholar]
- Galperin M. Y., Koonin E. V. Who's your neighbor? New computational approaches for functional genomics. Nat Biotechnol. 2000 Jun;18(6):609–613. doi: 10.1038/76443. [DOI] [PubMed] [Google Scholar]
- Galperin M. Y., Natale D. A., Aravind L., Koonin E. V. A specialized version of the HD hydrolase domain implicated in signal transduction. J Mol Microbiol Biotechnol. 1999 Nov;1(2):303–305. [PMC free article] [PubMed] [Google Scholar]
- Han C. D., Coe E. H., Jr, Martienssen R. A. Molecular cloning and characterization of iojap (ij), a pattern striping gene of maize. EMBO J. 1992 Nov;11(11):4037–4046. doi: 10.1002/j.1460-2075.1992.tb05497.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herz S., Wungsintaweekul J., Schuhr C. A., Hecht S., Luttgen H., Sagner S., Fellermeier M., Eisenreich W., Zenk M. H., Bacher A. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate to 2C-methyl-D-erythritol 2,4-cyclodiphosphate. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2486–2490. doi: 10.1073/pnas.040554697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huynen M., Snel B., Lathe W., 3rd, Bork P. Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res. 2000 Aug;10(8):1204–1210. doi: 10.1101/gr.10.8.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hwang K. Y., Chung J. H., Kim S. H., Han Y. S., Cho Y. Structure-based identification of a novel NTPase from Methanococcus jannaschii. Nat Struct Biol. 1999 Jul;6(7):691–696. doi: 10.1038/10745. [DOI] [PubMed] [Google Scholar]
- Laber B., Maurer W., Scharf S., Stepusin K., Schmidt F. S. Vitamin B6 biosynthesis: formation of pyridoxine 5'-phosphate from 4-(phosphohydroxy)-L-threonine and 1-deoxy-D-xylulose-5-phosphate by PdxA and PdxJ protein. FEBS Lett. 1999 Apr 16;449(1):45–48. doi: 10.1016/s0014-5793(99)00393-2. [DOI] [PubMed] [Google Scholar]
- Lüttgen H., Rohdich F., Herz S., Wungsintaweekul J., Hecht S., Schuhr C. A., Fellermeier M., Sagner S., Zenk M. H., Bacher A. Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1062–1067. doi: 10.1073/pnas.97.3.1062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Natale D. A., Galperin M. Y., Tatusov R. L., Koonin E. V. Using the COG database to improve gene recognition in complete genomes. Genetica. 2000;108(1):9–17. doi: 10.1023/a:1004031323748. [DOI] [PubMed] [Google Scholar]
- Nelson K. E., Paulsen I. T., Heidelberg J. F., Fraser C. M. Status of genome projects for nonpathogenic bacteria and archaea. Nat Biotechnol. 2000 Oct;18(10):1049–1054. doi: 10.1038/80235. [DOI] [PubMed] [Google Scholar]
- Osmani A. H., May G. S., Osmani S. A. The extremely conserved pyroA gene of Aspergillus nidulans is required for pyridoxine synthesis and is required indirectly for resistance to photosensitizers. J Biol Chem. 1999 Aug 13;274(33):23565–23569. doi: 10.1074/jbc.274.33.23565. [DOI] [PubMed] [Google Scholar]
- Padilla P. A., Fuge E. K., Crawford M. E., Errett A., Werner-Washburne M. The highly conserved, coregulated SNO and SNZ gene families in Saccharomyces cerevisiae respond to nutrient limitation. J Bacteriol. 1998 Nov;180(21):5718–5726. doi: 10.1128/jb.180.21.5718-5726.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rohdich F., Wungsintaweekul J., Fellermeier M., Sagner S., Herz S., Kis K., Eisenreich W., Bacher A., Zenk M. H. Cytidine 5'-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11758–11763. doi: 10.1073/pnas.96.21.11758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothfield L., Justice S., García-Lara J. Bacterial cell division. Annu Rev Genet. 1999;33:423–448. doi: 10.1146/annurev.genet.33.1.423. [DOI] [PubMed] [Google Scholar]
- Schultz J., Copley R. R., Doerks T., Ponting C. P., Bork P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 2000 Jan 1;28(1):231–234. doi: 10.1093/nar/28.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tal R., Wong H. C., Calhoon R., Gelfand D., Fear A. L., Volman G., Mayer R., Ross P., Amikam D., Weinhouse H. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol. 1998 Sep;180(17):4416–4425. doi: 10.1128/jb.180.17.4416-4425.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tatusov R. L., Galperin M. Y., Natale D. A., Koonin E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000 Jan 1;28(1):33–36. doi: 10.1093/nar/28.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor B. L., Zhulin I. B. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev. 1999 Jun;63(2):479–506. doi: 10.1128/mmbr.63.2.479-506.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zarembinski T. I., Hung L. W., Mueller-Dieckmann H. J., Kim K. K., Yokota H., Kim R., Kim S. H. Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15189–15193. doi: 10.1073/pnas.95.26.15189. [DOI] [PMC free article] [PubMed] [Google Scholar]