Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2001 Aug;2(4):207–225. doi: 10.1002/cfg.94

Comparison of the Proteomes of Three Yeast Wild Type Strains: CEN.PK2, FY1679 and W303

Adelina Rogowska-Wrzesinska 1,, Peter Mose Larsen 1, Anders Blomberg 2, Angelika Görg 3, Peter Roepstorff 4, Joakim Norbeck 5, Stephen John Fey 1
PMCID: PMC2447217  PMID: 18628919

Abstract

Yeast deletion strains created during gene function analysis projects very often show drastic phenotypic differences depending on the genetic background used. These results indicate the existence of important molecular differences between the CEN.PK2, FY1679 and W303 wild type strains. To characterise these differences we have compared the protein expression levels between CEN.PK2, FY1679 and W303 strains using twodimensional gel electrophoresis and identified selected proteins by mass spectrometric analysis. We have found that FY1679 and W303 strains are more similar to each other than to the CEN.PK2 strain. This study identifies 62 proteins that are differentially expressed between the strains and provides a valuable source of data for the interpretation of yeast mutant phenotypes observed in CEN.PK2, FY1679 and W303 strains.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bilsland E., Dahlén M., Sunnerhagen P. Genomic disruption of six budding yeast genes gives one drastic example of phenotype strain-dependence. Yeast. 1998 May;14(7):655–664. doi: 10.1002/(SICI)1097-0061(199805)14:7<655::AID-YEA257>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  2. Bonhivers M., Carbrey J. M., Gould S. J., Agre P. Aquaporins in Saccharomyces. Genetic and functional distinctions between laboratory and wild-type strains. J Biol Chem. 1998 Oct 16;273(42):27565–27572. doi: 10.1074/jbc.273.42.27565. [DOI] [PubMed] [Google Scholar]
  3. Boucherie H., Sagliocco F., Joubert R., Maillet I., Labarre J., Perrot M. Two-dimensional gel protein database of Saccharomyces cerevisiae. Electrophoresis. 1996 Nov;17(11):1683–1699. doi: 10.1002/elps.1150171106. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Cairns B. R., Erdjument-Bromage H., Tempst P., Winston F., Kornberg R. D. Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol Cell. 1998 Nov;2(5):639–651. doi: 10.1016/s1097-2765(00)80162-8. [DOI] [PubMed] [Google Scholar]
  6. Costanzo M. C., Crawford M. E., Hirschman J. E., Kranz J. E., Olsen P., Robertson L. S., Skrzypek M. S., Braun B. R., Hopkins K. L., Kondu P. YPD, PombePD and WormPD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res. 2001 Jan 1;29(1):75–79. doi: 10.1093/nar/29.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daum G., Tuller G., Nemec T., Hrastnik C., Balliano G., Cattel L., Milla P., Rocco F., Conzelmann A., Vionnet C. Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast. 1999 May;15(7):601–614. doi: 10.1002/(SICI)1097-0061(199905)15:7<601::AID-YEA390>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  8. Demianova M., Formosa T. G., Ellis S. R. Yeast proteins related to the p40/laminin receptor precursor are essential components of the 40 S ribosomal subunit. J Biol Chem. 1996 May 10;271(19):11383–11391. doi: 10.1074/jbc.271.19.11383. [DOI] [PubMed] [Google Scholar]
  9. Dueñas E., Vazquez de Aldana C. R., de Cos T., Castro C., Henar Valdivieso M. Generation of null alleles for the functional analysis of six genes from the right arm of Saccharomyces cerevisiae chromosome II. Yeast. 1999 May;15(7):615–623. doi: 10.1002/(SICI)1097-0061(199905)15:7<615::AID-YEA385>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  10. Elion E. A., Brill J. A., Fink G. R. FUS3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9392–9396. doi: 10.1073/pnas.88.21.9392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Entian K. D., Schuster T., Hegemann J. H., Becher D., Feldmann H., Güldener U., Götz R., Hansen M., Hollenberg C. P., Jansen G. Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol Gen Genet. 1999 Dec;262(4-5):683–702. doi: 10.1007/pl00013817. [DOI] [PubMed] [Google Scholar]
  12. Fey S. J., Nawrocki A., Larsen M. R., Görg A., Roepstorff P., Skews G. N., Williams R., Larsen P. M. Proteome analysis of Saccharomyces cerevisiae: a methodological outline. Electrophoresis. 1997 Aug;18(8):1361–1372. doi: 10.1002/elps.1150180811. [DOI] [PubMed] [Google Scholar]
  13. Gaisne M., Bécam A. M., Verdière J., Herbert C. J. A 'natural' mutation in Saccharomyces cerevisiae strains derived from S288c affects the complex regulatory gene HAP1 (CYP1). Curr Genet. 1999 Oct;36(4):195–200. doi: 10.1007/s002940050490. [DOI] [PubMed] [Google Scholar]
  14. Goto K., Fukuda H., Kichise K., Kitano K., Hara S. Cloning and nucleotide sequence of the KHS killer gene of Saccharomyces cerevisiae. Agric Biol Chem. 1991 Aug;55(8):1953–1958. [PubMed] [Google Scholar]
  15. Grava S., Dumoulin P., Madania A., Tarassov I., Winsor B. Functional analysis of six genes from chromosomes XIV and XV of Saccharomyces cerevisiae reveals YOR145c as an essential gene and YNL059c/ARP5 as a strain-dependent essential gene encoding nuclear proteins. Yeast. 2000 Aug;16(11):1025–1033. doi: 10.1002/1097-0061(200008)16:11<1025::AID-YEA602>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  16. Hajji K., Clotet J., Ariño J. Disruption and phenotypic analysis of seven ORFs from the left arm of chromosome XV of Saccharomyces cerevisiae. Yeast. 1999 Mar 30;15(5):435–441. doi: 10.1002/(SICI)1097-0061(19990330)15:5<435::AID-YEA367>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  17. Hoogland C., Sanchez J. C., Tonella L., Binz P. A., Bairoch A., Hochstrasser D. F., Appel R. D. The 1999 SWISS-2DPAGE database update. Nucleic Acids Res. 2000 Jan 1;28(1):286–288. doi: 10.1093/nar/28.1.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Huang S., Elliott R. C., Liu P. S., Koduri R. K., Weickmann J. L., Lee J. H., Blair L. C., Ghosh-Dastidar P., Bradshaw R. A., Bryan K. M. Specificity of cotranslational amino-terminal processing of proteins in yeast. Biochemistry. 1987 Dec 15;26(25):8242–8246. doi: 10.1021/bi00399a033. [DOI] [PubMed] [Google Scholar]
  19. Jensen O. N., Larsen M. R., Roepstorff P. Mass spectrometric identification and microcharacterization of proteins from electrophoretic gels: strategies and applications. Proteins. 1998;Suppl 2:74–89. doi: 10.1002/(sici)1097-0134(1998)33:2+<74::aid-prot9>3.3.co;2-2. [DOI] [PubMed] [Google Scholar]
  20. Joubert R., Brignon P., Lehmann C., Monribot C., Gendre F., Boucherie H. Two-dimensional gel analysis of the proteome of lager brewing yeasts. Yeast. 2000 Apr;16(6):511–522. doi: 10.1002/(SICI)1097-0061(200004)16:6<511::AID-YEA544>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  21. Kron S. J. Filamentous growth in budding yeast. Trends Microbiol. 1997 Nov;5(11):450–454. doi: 10.1016/S0966-842X(97)01131-1. [DOI] [PubMed] [Google Scholar]
  22. Kucharczyk R., Gromadka R., Migdalski A., Slonimski P. P., Rytka J. Disruption of six novel yeast genes located on chromosome II reveals one gene essential for vegetative growth and two required for sporulation and conferring hypersensitivity to various chemicals. Yeast. 1999 Jul;15(10B):987–1000. doi: 10.1002/(SICI)1097-0061(199907)15:10B<987::AID-YEA403>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  23. Lieberman P. M., Schmidt M. C., Kao C. C., Berk A. J. Two distinct domains in the yeast transcription factor IID and evidence for a TATA box-induced conformational change. Mol Cell Biol. 1991 Jan;11(1):63–74. doi: 10.1128/mcb.11.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liu H., Styles C. A., Fink G. R. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics. 1996 Nov;144(3):967–978. doi: 10.1093/genetics/144.3.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liu L., Zeng M., Hausladen A., Heitman J., Stamler J. S. Protection from nitrosative stress by yeast flavohemoglobin. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4672–4676. doi: 10.1073/pnas.090083597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. López M. C., Sánchez M., Fermiñn E., Domínguez A. Disruption of six Saccharomyces cerevisiae genes from chromosome IV and basic phenotypic analysis of deletion mutants. Yeast. 1998 Sep 30;14(13):1199–1208. doi: 10.1002/(SICI)1097-0061(19980930)14:13<1199::AID-YEA309>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  27. Mortimer R. K., Johnston J. R. Genealogy of principal strains of the yeast genetic stock center. Genetics. 1986 May;113(1):35–43. doi: 10.1093/genetics/113.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nawrocki A., Larsen M. R., Podtelejnikov A. V., Jensen O. N., Mann M., Roepstorff P., Görg A., Fey S. J., Larsen P. M. Correlation of acidic and basic carrier ampholyte and immobilized pH gradient two-dimensional gel electrophoresis patterns based on mass spectrometric protein identification. Electrophoresis. 1998 May;19(6):1024–1035. doi: 10.1002/elps.1150190618. [DOI] [PubMed] [Google Scholar]
  29. Norbeck J., Blomberg A. Two-dimensional electrophoretic separation of yeast proteins using a non-linear wide range (pH 3-10) immobilized pH gradient in the first dimension; reproducibility and evidence for isoelectric focusing of alkaline (pI > 7) proteins. Yeast. 1997 Dec;13(16):1519–1534. doi: 10.1002/(SICI)1097-0061(199712)13:16<1519::AID-YEA211>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  30. Perrot M., Sagliocco F., Mini T., Monribot C., Schneider U., Shevchenko A., Mann M., Jenö P., Boucherie H. Two-dimensional gel protein database of Saccharomyces cerevisiae (update 1999). Electrophoresis. 1999 Aug;20(11):2280–2298. doi: 10.1002/(SICI)1522-2683(19990801)20:11<2280::AID-ELPS2280>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  31. Polevoda B., Norbeck J., Takakura H., Blomberg A., Sherman F. Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. EMBO J. 1999 Nov 1;18(21):6155–6168. doi: 10.1093/emboj/18.21.6155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Prior C., Potier S., Souciet J. L., Sychrova H. Characterization of the NHA1 gene encoding a Na+/H+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett. 1996 May 27;387(1):89–93. doi: 10.1016/0014-5793(96)00470-x. [DOI] [PubMed] [Google Scholar]
  33. Rohde J. R., Trinh J., Sadowski I. Multiple signals regulate GAL transcription in yeast. Mol Cell Biol. 2000 Jun;20(11):3880–3886. doi: 10.1128/mcb.20.11.3880-3886.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rothstein R. J. A genetic fine structure analysis of the suppressor 3 locus in Saccharomyces. Genetics. 1977 Jan;85(1):55–64. doi: 10.1093/genetics/85.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rothstein R. J., Esposito R. E., Esposito M. S. The effect of ochre suppression on meiosis and ascospore formation in Saccharomyces. Genetics. 1977 Jan;85(1):35–54. doi: 10.1093/genetics/85.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
  37. Rothstein R. J., Sherman F. Dependence on mating type for the overproduction of iso-2-cytochrome c in the yeast mutant CYC7-H2. Genetics. 1980 Apr;94(4):891–898. doi: 10.1093/genetics/94.4.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rothstein R. J., Sherman F. Genes affecting the expression of cytochrome c in yeast: genetic mapping and genetic interactions. Genetics. 1980 Apr;94(4):871–889. doi: 10.1093/genetics/94.4.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shevchenko A., Jensen O. N., Podtelejnikov A. V., Sagliocco F., Wilm M., Vorm O., Mortensen P., Shevchenko A., Boucherie H., Mann M. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14440–14445. doi: 10.1073/pnas.93.25.14440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tercero J. C., Dinman J. D., Wickner R. B. Yeast MAK3 N-acetyltransferase recognizes the N-terminal four amino acids of the major coat protein (gag) of the L-A double-stranded RNA virus. J Bacteriol. 1993 May;175(10):3192–3194. doi: 10.1128/jb.175.10.3192-3194.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Thierry A., Fairhead C., Dujon B. The complete sequence of the 8.2 kb segment left of MAT on chromosome III reveals five ORFs, including a gene for a yeast ribokinase. Yeast. 1990 Nov-Dec;6(6):521–534. doi: 10.1002/yea.320060609. [DOI] [PubMed] [Google Scholar]
  42. Thomas B. J., Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell. 1989 Feb 24;56(4):619–630. doi: 10.1016/0092-8674(89)90584-9. [DOI] [PubMed] [Google Scholar]
  43. Wallis J. W., Chrebet G., Brodsky G., Rolfe M., Rothstein R. A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell. 1989 Jul 28;58(2):409–419. doi: 10.1016/0092-8674(89)90855-6. [DOI] [PubMed] [Google Scholar]
  44. Winston F., Dollard C., Ricupero-Hovasse S. L. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast. 1995 Jan;11(1):53–55. doi: 10.1002/yea.320110107. [DOI] [PubMed] [Google Scholar]
  45. Yu Y., Eriksson P., Stillman D. J. Architectural transcription factors and the SAGA complex function in parallel pathways to activate transcription. Mol Cell Biol. 2000 Apr;20(7):2350–2357. doi: 10.1128/mcb.20.7.2350-2357.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhu H., Riggs A. F. Yeast flavohemoglobin is an ancient protein related to globins and a reductase family. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5015–5019. doi: 10.1073/pnas.89.11.5015. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES