Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2002 Feb;3(1):57–66. doi: 10.1002/cfg.130

High-Throughput SNP Genotyping

Suzanne Jenkins 1,, Neil Gibson 1
PMCID: PMC2447245  PMID: 18628885

Abstract

Whole genome approaches using single nucleotide polymorphism (SNP) markers have the potential to transform complex disease genetics and expedite pharmacogenetics research. This has led to a requirement for high-throughput SNP genotyping platforms. Development of a successful high-throughput genotyping platform depends on coupling reliable assay chemistry with an appropriate detection system to maximise efficiency with respect to accuracy, speed and cost. Current technology platforms are able to deliver throughputs in excess of 100 000 genotypes per day, with an accuracy of >99%, at a cost of 20–30 cents per genotype. In order to meet the demands of the coming years, however, genotyping platforms need to deliver throughputs in the order of one million genotypes per day at a cost of only a few cents per genotype. In addition, DNA template requirements must be minimised such that hundreds of thousands of SNPs can be interrogated using a relatively small amount of genomic DNA. As such, it is predicted that the next generation of high-throughput genotyping platforms will exploit large-scale multiplex reactions and solid phase assay detection systems.

Full Text

The Full Text of this article is available as a PDF (144.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderborn A., Kristofferson A., Hammerling U. Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Res. 2000 Aug;10(8):1249–1258. doi: 10.1101/gr.10.8.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong B., Stewart M., Mazumder A. Suspension arrays for high throughput, multiplexed single nucleotide polymorphism genotyping. Cytometry. 2000 Jun 1;40(2):102–108. [PubMed] [Google Scholar]
  3. Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):189–193. doi: 10.1073/pnas.88.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barta C., Ronai Z., Nemoda Z., Szekely A., Kovacs E., Sasvari-Szekely M., Guttman A. Analysis of dopamine D4 receptor gene polymorphism using microchip electrophoresis. J Chromatogr A. 2001 Jul 27;924(1-2):285–290. doi: 10.1016/s0021-9673(01)00915-3. [DOI] [PubMed] [Google Scholar]
  5. Barta C., Ronai Z., Sasvari-Szekely M., Guttman A. Rapid single nucleotide polymorphism analysis by primer extension and capillary electrophoresis using polyvinyl pyrrolidone matrix. Electrophoresis. 2001;22(4):779–782. doi: 10.1002/1522-2683(200102)22:4<779::AID-ELPS779>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  6. Ben-Dor A., Karp R., Schwikowski B., Yakhini Z. Universal DNA tag systems: a combinatorial design scheme. J Comput Biol. 2000;7(3-4):503–519. doi: 10.1089/106652700750050916. [DOI] [PubMed] [Google Scholar]
  7. Bray M. S., Boerwinkle E., Doris P. A. High-throughput multiplex SNP genotyping with MALDI-TOF mass spectrometry: practice, problems and promise. Hum Mutat. 2001 Apr;17(4):296–304. doi: 10.1002/humu.27. [DOI] [PubMed] [Google Scholar]
  8. Chen J., Iannone M. A., Li M. S., Taylor J. D., Rivers P., Nelsen A. J., Slentz-Kesler K. A., Roses A., Weiner M. P. A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Res. 2000 Apr;10(4):549–557. doi: 10.1101/gr.10.4.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fan J. B., Chen X., Halushka M. K., Berno A., Huang X., Ryder T., Lipshutz R. J., Lockhart D. J., Chakravarti A. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res. 2000 Jun;10(6):853–860. doi: 10.1101/gr.10.6.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gibson N. J., Gillard H. L., Whitcombe D., Ferrie R. M., Newton C. R., Little S. A homogeneous method for genotyping with fluorescence polarization. Clin Chem. 1997 Aug;43(8 Pt 1):1336–1341. [PubMed] [Google Scholar]
  11. Hall J. G., Eis P. S., Law S. M., Reynaldo L. P., Prudent J. R., Marshall D. J., Allawi H. T., Mast A. L., Dahlberg J. E., Kwiatkowski R. W. Sensitive detection of DNA polymorphisms by the serial invasive signal amplification reaction. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8272–8277. doi: 10.1073/pnas.140225597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hessner M. J., Friedman K. D., Voelkerding K. V., Huber S., Ryan D., Nuccie B., Ledford M. Multisite study for genotyping of the factor II (prothrombin) G20210A mutation by the invader assay. Clin Chem. 2001 Nov;47(11):2048–2050. [PubMed] [Google Scholar]
  13. Hiratsuka M., Agatsuma Y., Omori F., Narahara K., Inoue T., Kishikawa Y., Mizugaki M. High throughput detection of drug-metabolizing enzyme polymorphisms by allele-specific fluorogenic 5' nuclease chain reaction assay. Biol Pharm Bull. 2000 Oct;23(10):1131–1135. doi: 10.1248/bpb.23.1131. [DOI] [PubMed] [Google Scholar]
  14. Howell W. M., Jobs M., Gyllensten U., Brookes A. J. Dynamic allele-specific hybridization. A new method for scoring single nucleotide polymorphisms. Nat Biotechnol. 1999 Jan;17(1):87–88. doi: 10.1038/5270. [DOI] [PubMed] [Google Scholar]
  15. Hsu T. M., Law S. M., Duan S., Neri B. P., Kwok P. Y. Genotyping single-nucleotide polymorphisms by the invader assay with dual-color fluorescence polarization detection. Clin Chem. 2001 Aug;47(8):1373–1377. [PubMed] [Google Scholar]
  16. Iannone M. A., Taylor J. D., Chen J., Li M. S., Rivers P., Slentz-Kesler K. A., Weiner M. P. Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry. 2000 Feb 1;39(2):131–140. [PubMed] [Google Scholar]
  17. Kokoris M., Dix K., Moynihan K., Mathis J., Erwin B., Grass P., Hines B., Duesterhoeft A. High-throughput SNP genotyping with the Masscode system. Mol Diagn. 2000 Dec;5(4):329–340. doi: 10.1007/BF03262094. [DOI] [PubMed] [Google Scholar]
  18. Koutny L., Schmalzing D., Salas-Solano O., El-Difrawy S., Adourian A., Buonocore S., Abbey K., McEwan P., Matsudaira P., Ehrlich D. Eight hundred-base sequencing in a microfabricated electrophoretic device. Anal Chem. 2000 Jul 15;72(14):3388–3391. doi: 10.1021/ac9913614. [DOI] [PubMed] [Google Scholar]
  19. Ladner D. P., Leamon J. H., Hamann S., Tarafa G., Strugnell T., Dillon D., Lizardi P., Costa J. Multiplex detection of hotspot mutations by rolling circle-enabled universal microarrays. Lab Invest. 2001 Aug;81(8):1079–1086. doi: 10.1038/labinvest.3780320. [DOI] [PubMed] [Google Scholar]
  20. Landegren U., Kaiser R., Sanders J., Hood L. A ligase-mediated gene detection technique. Science. 1988 Aug 26;241(4869):1077–1080. doi: 10.1126/science.3413476. [DOI] [PubMed] [Google Scholar]
  21. Latif S., Bauer-Sardina I., Ranade K., Livak K. J., Kwok P. Y. Fluorescence polarization in homogeneous nucleic acid analysis II: 5'-nuclease assay. Genome Res. 2001 Mar;11(3):436–440. doi: 10.1101/gr.156601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu S., Ren H., Gao Q., Roach D. J., Loder R. T., Jr, Armstrong T. M., Mao Q., Blaga I., Barker D. L., Jovanovich S. B. Automated parallel DNA sequencing on multiple channel microchips. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5369–5374. doi: 10.1073/pnas.100113197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Livak K. J., Marmaro J., Todd J. A. Towards fully automated genome-wide polymorphism screening. Nat Genet. 1995 Apr;9(4):341–342. doi: 10.1038/ng0495-341. [DOI] [PubMed] [Google Scholar]
  24. Medintz I. L., Paegel B. M., Mathies R. A. Microfabricated capillary array electrophoresis DNA analysis systems. J Chromatogr A. 2001 Jul 27;924(1-2):265–270. doi: 10.1016/s0021-9673(01)00852-4. [DOI] [PubMed] [Google Scholar]
  25. Medintz I., Wong W. W., Berti L., Shiow L., Tom J., Scherer J., Sensabaugh G., Mathies R. A. High-performance multiplex SNP analysis of three hemochromatosis-related mutations with capillary array electrophoresis microplates. Genome Res. 2001 Mar;11(3):413–421. doi: 10.1101/gr.164701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mein C. A., Barratt B. J., Dunn M. G., Siegmund T., Smith A. N., Esposito L., Nutland S., Stevens H. E., Wilson A. J., Phillips M. S. Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation. Genome Res. 2000 Mar;10(3):330–343. doi: 10.1101/gr.10.3.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nickerson D. A., Kaiser R., Lappin S., Stewart J., Hood L., Landegren U. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8923–8927. doi: 10.1073/pnas.87.22.8923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nilsson M., Malmgren H., Samiotaki M., Kwiatkowski M., Chowdhary B. P., Landegren U. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science. 1994 Sep 30;265(5181):2085–2088. doi: 10.1126/science.7522346. [DOI] [PubMed] [Google Scholar]
  29. Ohnishi Y., Tanaka T., Ozaki K., Yamada R., Suzuki H., Nakamura Y. A high-throughput SNP typing system for genome-wide association studies. J Hum Genet. 2001;46(8):471–477. doi: 10.1007/s100380170047. [DOI] [PubMed] [Google Scholar]
  30. Ranade K., Chang M. S., Ting C. T., Pei D., Hsiao C. F., Olivier M., Pesich R., Hebert J., Chen Y. D., Dzau V. J. High-throughput genotyping with single nucleotide polymorphisms. Genome Res. 2001 Jul;11(7):1262–1268. doi: 10.1101/gr.157801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rösler A., Bailey L., Jones S., Briggs J., Cuss S., Horsey I., Kenrick M., Kingsmore S., Kent L., Pickering J. Rolling circle amplification for scoring single nucleotide polymorphisms. Nucleosides Nucleotides Nucleic Acids. 2001 Apr-Jul;20(4-7):893–894. doi: 10.1081/NCN-100002453. [DOI] [PubMed] [Google Scholar]
  32. Sachidanandam R., Weissman D., Schmidt S. C., Kakol J. M., Stein L. D., Marth G., Sherry S., Mullikin J. C., Mortimore B. J., Willey D. L. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001 Feb 15;409(6822):928–933. doi: 10.1038/35057149. [DOI] [PubMed] [Google Scholar]
  33. Samiotaki M., Kwiatkowski M., Parik J., Landegren U. Dual-color detection of DNA sequence variants by ligase-mediated analysis. Genomics. 1994 Mar 15;20(2):238–242. doi: 10.1006/geno.1994.1159. [DOI] [PubMed] [Google Scholar]
  34. Sapolsky R. J., Hsie L., Berno A., Ghandour G., Mittmann M., Fan J. B. High-throughput polymorphism screening and genotyping with high-density oligonucleotide arrays. Genet Anal. 1999 Feb;14(5-6):187–192. doi: 10.1016/s1050-3862(98)00026-6. [DOI] [PubMed] [Google Scholar]
  35. Shchepinov M. S., Denissenko M. F., Smylie K. J., Wörl R. J., Leppin A. L., Cantor C. R., Rodi C. P. Matrix-induced fragmentation of P3'-N5' phosphoramidate-containing DNA: high-throughput MALDI-TOF analysis of genomic sequence polymorphisms. Nucleic Acids Res. 2001 Sep 15;29(18):3864–3872. doi: 10.1093/nar/29.18.3864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tyagi S., Kramer F. R. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996 Mar;14(3):303–308. doi: 10.1038/nbt0396-303. [DOI] [PubMed] [Google Scholar]
  37. Vaughan P., McCarthy T. V. A novel process for mutation detection using uracil DNA-glycosylase. Nucleic Acids Res. 1998 Feb 1;26(3):810–815. doi: 10.1093/nar/26.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vaughan P. Use of uracil DNA glycosylase in the detection of known DNA mutations and polymorphisms. Glycosylase-mediated polymorphism detection (GMPD-check). Methods Mol Biol. 2000;152:169–177. doi: 10.1385/1-59259-068-3:169. [DOI] [PubMed] [Google Scholar]
  39. Wang D. G., Fan J. B., Siao C. J., Berno A., Young P., Sapolsky R., Ghandour G., Perkins N., Winchester E., Spencer J. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998 May 15;280(5366):1077–1082. doi: 10.1126/science.280.5366.1077. [DOI] [PubMed] [Google Scholar]
  40. Whitcombe D., Theaker J., Guy S. P., Brown T., Little S. Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol. 1999 Aug;17(8):804–807. doi: 10.1038/11751. [DOI] [PubMed] [Google Scholar]
  41. Ye F., Li M. S., Taylor J. D., Nguyen Q., Colton H. M., Casey W. M., Wagner M., Weiner M. P., Chen J. Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification. Hum Mutat. 2001 Apr;17(4):305–316. doi: 10.1002/humu.28. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES