Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2004 Feb;5(1):39–47. doi: 10.1002/cfg.369

ArraySolver: An Algorithm for Colour-Coded Graphical Display and Wilcoxon Signed-Rank Statistics for Comparing Microarray Gene Expression Data

Haseeb Ahmad Khan 1,
PMCID: PMC2447319  PMID: 18629036

Abstract

The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for transferring data from one platform to other. Various statistical methods, including the t-test, analysis of variance, Pearson test and Mann–Whitney U test, have been reported for comparing microarray data, whereas the utilization of the Wilcoxon signed-rank test, which is an appropriate test for two-groups comparison of gene expression data, has largely been neglected in microarray studies. The aim of this investigation was to build an integrated tool, ArraySolver, for colour-coded graphical display and comparison of gene expression data using the Wilcoxon signed-rank test. The results of software validation showed similar outputs with ArraySolver and SPSS for large datasets. Whereas the former program appeared to be more accurate for 25 or fewer pairs (n ≤ 25), suggesting its potential application in analysing molecular signatures that usually contain small numbers of genes. The main advantages of ArraySolver are easy data selection, convenient report format, accurate statistics and the familiar Excel platform.

Full Text

The Full Text of this article is available as a PDF (280.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahr André, Karn Thomas, Solbach Christine, Seiter Tanja, Strebhardt Klaus, Holtrich Uwe, Kaufmann Manfred. Identification of high risk breast-cancer patients by gene expression profiling. Lancet. 2002 Jan 12;359(9301):131–132. doi: 10.1016/S0140-6736(02)07337-3. [DOI] [PubMed] [Google Scholar]
  2. Alizadeh A. A., Eisen M. B., Davis R. E., Ma C., Lossos I. S., Rosenwald A., Boldrick J. C., Sabet H., Tran T., Yu X. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000 Feb 3;403(6769):503–511. doi: 10.1038/35000501. [DOI] [PubMed] [Google Scholar]
  3. Beenken Samuel W., Hockett Richard, Jr, Grizzle William, Weiss Heidi L., Pickens Allan, Perloff Marjorie, Malone Winfred F., Bland Kirby I. Transforming growth factor-alpha: a surrogate endpoint biomarker? J Am Coll Surg. 2002 Aug;195(2):149–158. doi: 10.1016/s1072-7515(02)01219-x. [DOI] [PubMed] [Google Scholar]
  4. Bouras Toula, Southey Melissa C., Chang Andy C., Reddel Roger R., Willhite Dorian, Glynne Richard, Henderson Michael A., Armes Jane E., Venter Deon J. Stanniocalcin 2 is an estrogen-responsive gene coexpressed with the estrogen receptor in human breast cancer. Cancer Res. 2002 Mar 1;62(5):1289–1295. [PubMed] [Google Scholar]
  5. Bradbury A. W., Carter D. C., Miller W. R., Cho-Chung Y. S., Clair T. Protein kinase A (PK-A) regulatory subunit expression in colorectal cancer and related mucosa. Br J Cancer. 1994 Apr;69(4):738–742. doi: 10.1038/bjc.1994.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bull J. H., Ellison G., Patel A., Muir G., Walker M., Underwood M., Khan F., Paskins L. Identification of potential diagnostic markers of prostate cancer and prostatic intraepithelial neoplasia using cDNA microarray. Br J Cancer. 2001 Jun 1;84(11):1512–1519. doi: 10.1054/bjoc.2001.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bushel Pierre R., Hamadeh Hisham K., Bennett Lee, Green James, Ableson Alan, Misener Stephen, Afshari Cynthia A., Paules Richard S. Computational selection of distinct class- and subclass-specific gene expression signatures. J Biomed Inform. 2002 Jun;35(3):160–170. doi: 10.1016/s1532-0464(02)00525-7. [DOI] [PubMed] [Google Scholar]
  8. Conway T., Kraus B., Tucker D. L., Smalley D. J., Dorman A. F., McKibben L. DNA array analysis in a Microsoft Windows environment. Biotechniques. 2002 Jan;32(1):110, 112-4, 116, 118-9. doi: 10.2144/02321bc02. [DOI] [PubMed] [Google Scholar]
  9. Efron Bradley, Tibshirani Robert. Empirical bayes methods and false discovery rates for microarrays. Genet Epidemiol. 2002 Jun;23(1):70–86. doi: 10.1002/gepi.1124. [DOI] [PubMed] [Google Scholar]
  10. Gaasterland T., Bekiranov S. Making the most of microarray data. Nat Genet. 2000 Mar;24(3):204–206. doi: 10.1038/73392. [DOI] [PubMed] [Google Scholar]
  11. Golub T. R., Slonim D. K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J. P., Coller H., Loh M. L., Downing J. R., Caligiuri M. A. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999 Oct 15;286(5439):531–537. doi: 10.1126/science.286.5439.531. [DOI] [PubMed] [Google Scholar]
  12. Gütgemann A., Golob M., Müller S., Buettner R., Bosserhoff A. K. Isolation of invasion-associated cDNAs in melanoma. Arch Dermatol Res. 2001 Jun;293(6):283–290. doi: 10.1007/s004030100232. [DOI] [PubMed] [Google Scholar]
  13. Han G-M, Chen S-L, Shen N., Ye S., Bao C-D, Gu Y-Y. Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes Immun. 2003 Apr;4(3):177–186. doi: 10.1038/sj.gene.6363966. [DOI] [PubMed] [Google Scholar]
  14. Johnston S. R., Saccani-Jotti G., Smith I. E., Salter J., Newby J., Coppen M., Ebbs S. R., Dowsett M. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res. 1995 Aug 1;55(15):3331–3338. [PubMed] [Google Scholar]
  15. Kihara C., Tsunoda T., Tanaka T., Yamana H., Furukawa Y., Ono K., Kitahara O., Zembutsu H., Yanagawa R., Hirata K. Prediction of sensitivity of esophageal tumors to adjuvant chemotherapy by cDNA microarray analysis of gene-expression profiles. Cancer Res. 2001 Sep 1;61(17):6474–6479. [PubMed] [Google Scholar]
  16. Ladanyi M., Chan W. C., Triche T. J., Gerald W. L. Expression profiling of human tumors: the end of surgical pathology? J Mol Diagn. 2001 Aug;3(3):92–97. doi: 10.1016/S1525-1578(10)60657-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leygue E., Dotzlaw H., Watson P. H., Murphy L. C. Altered expression of estrogen receptor-alpha variant messenger RNAs between adjacent normal breast and breast tumor tissues. Breast Cancer Res. 2000;2(1):64–72. doi: 10.1186/bcr30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu W-m, Mei R., Di X., Ryder T. B., Hubbell E., Dee S., Webster T. A., Harrington C. A., Ho M-h, Baid J. Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics. 2002 Dec;18(12):1593–1599. doi: 10.1093/bioinformatics/18.12.1593. [DOI] [PubMed] [Google Scholar]
  19. Mariadason John M., Arango Diego, Corner Georgia A., Arañes Maria J., Hotchkiss Kylie A., Yang Wancai, Augenlicht Leonard H. A gene expression profile that defines colon cell maturation in vitro. Cancer Res. 2002 Aug 15;62(16):4791–4804. [PubMed] [Google Scholar]
  20. Maxwell David T., Jacobson John D., King Alan, Chan Philip J. Effect of pentoxifylline on tumor suppressor and proto-oncogene apoptosis in sperm. J Assist Reprod Genet. 2002 Jun;19(6):279–283. doi: 10.1023/A:1015725230011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mycko Marcin P., Papoian Ruben, Boschert Ursula, Raine Cedric S., Selmaj Krzysztof W. cDNA microarray analysis in multiple sclerosis lesions: detection of genes associated with disease activity. Brain. 2003 May;126(Pt 5):1048–1057. doi: 10.1093/brain/awg107. [DOI] [PubMed] [Google Scholar]
  22. Notterman D. A., Alon U., Sierk A. J., Levine A. J. Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res. 2001 Apr 1;61(7):3124–3130. [PubMed] [Google Scholar]
  23. Okabe S., Fujimoto N., Sueoka N., Suganuma M., Fujiki H. Modulation of gene expression by (-)-epigallocatechin gallate in PC-9 cells using a cDNA expression array. Biol Pharm Bull. 2001 Aug;24(8):883–886. doi: 10.1248/bpb.24.883. [DOI] [PubMed] [Google Scholar]
  24. Pfaffl M. W., Wittmann S. L., Meyer H. H. D., Bruckmaier R. M. Gene expression of immunologically important factors in blood cells, milk cells, and mammary tissue of cows. J Dairy Sci. 2003 Feb;86(2):538–545. doi: 10.3168/jds.S0022-0302(03)73632-7. [DOI] [PubMed] [Google Scholar]
  25. Ramaswamy Sridhar, Ross Ken N., Lander Eric S., Golub Todd R. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2002 Dec 9;33(1):49–54. doi: 10.1038/ng1060. [DOI] [PubMed] [Google Scholar]
  26. Robinson Prema, White A. Clinton, Lewis Dorothy E., Thornby John, David Elliott, Weinstock Joel. Sequential expression of the neuropeptides substance P and somatostatin in granulomas associated with murine cysticercosis. Infect Immun. 2002 Aug;70(8):4534–4538. doi: 10.1128/IAI.70.8.4534-4538.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rus Violeta, Atamas Sergei P., Shustova Valentina, Luzina Irina G., Selaru Florin, Magder Laurence S., Via Charles S. Expression of cytokine- and chemokine-related genes in peripheral blood mononuclear cells from lupus patients by cDNA array. Clin Immunol. 2002 Mar;102(3):283–290. doi: 10.1006/clim.2001.5182. [DOI] [PubMed] [Google Scholar]
  28. Schageman J. J., Basit M., Gallardo T. D., Garner H. R., Shohet R. V. MarC-V: a spreadsheet-based tool for analysis, normalization, and visualization of single cDNA microarray experiments. Biotechniques. 2002 Feb;32(2):338-40, 342, 344. doi: 10.2144/02322st07. [DOI] [PubMed] [Google Scholar]
  29. Su A. I., Welsh J. B., Sapinoso L. M., Kern S. G., Dimitrov P., Lapp H., Schultz P. G., Powell S. M., Moskaluk C. A., Frierson H. F., Jr Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res. 2001 Oct 15;61(20):7388–7393. [PubMed] [Google Scholar]
  30. Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky E., Lander E. S., Golub T. R. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2907–2912. doi: 10.1073/pnas.96.6.2907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tanaka T. S., Jaradat S. A., Lim M. K., Kargul G. J., Wang X., Grahovac M. J., Pantano S., Sano Y., Piao Y., Nagaraja R. Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9127–9132. doi: 10.1073/pnas.97.16.9127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thomas J. G., Olson J. M., Tapscott S. J., Zhao L. P. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res. 2001 Jul;11(7):1227–1236. doi: 10.1101/gr.165101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Troyanskaya Olga G., Garber Mitchell E., Brown Patrick O., Botstein David, Altman Russ B. Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics. 2002 Nov;18(11):1454–1461. doi: 10.1093/bioinformatics/18.11.1454. [DOI] [PubMed] [Google Scholar]
  34. Tusher V. G., Tibshirani R., Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001 Apr 17;98(9):5116–5121. doi: 10.1073/pnas.091062498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wang K., Gan L., Jeffery E., Gayle M., Gown A. M., Skelly M., Nelson P. S., Ng W. V., Schummer M., Hood L. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene. 1999 Mar 18;229(1-2):101–108. doi: 10.1016/s0378-1119(99)00035-9. [DOI] [PubMed] [Google Scholar]
  36. Wang W., Marsh S., Cassidy J., McLeod H. L. Pharmacogenomic dissection of resistance to thymidylate synthase inhibitors. Cancer Res. 2001 Jul 15;61(14):5505–5510. [PubMed] [Google Scholar]
  37. Wiley T. L., Stoppenbach D. T. Practice versus evidence in diagnostic audiology. ASHA. 1997 Fall;39(4):46–47. [PubMed] [Google Scholar]
  38. Xu Yan, Selaru Florin M., Yin Jing, Zou Tong Tong, Shustova Valentina, Mori Yuriko, Sato Fumiaki, Liu Thomas C., Olaru Andreea, Wang Suna. Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett's esophagus and esophageal cancer. Cancer Res. 2002 Jun 15;62(12):3493–3497. [PubMed] [Google Scholar]
  39. Yu C. L., Sun K. H., Tsai C. Y., Hsieh S. C., Yu H. S. Anti-dsDNA antibody up-regulates interleukin 6, but not cyclo-oxygenase, gene expression in glomerular mesangial cells: a marker of immune-mediated renal damage? Inflamm Res. 2001 Jan;50(1):12–18. doi: 10.1007/s000110050718. [DOI] [PubMed] [Google Scholar]
  40. Zhao Yanli, Pan Wei. Modified nonparametric approaches to detecting differentially expressed genes in replicated microarray experiments. Bioinformatics. 2003 Jun 12;19(9):1046–1054. doi: 10.1093/bioinformatics/btf879. [DOI] [PubMed] [Google Scholar]
  41. Zhou X., Tan F. K., Xiong M., Milewicz D. M., Feghali C. A., Fritzler M. J., Reveille J. D., Arnett F. C. Systemic sclerosis (scleroderma): specific autoantigen genes are selectively overexpressed in scleroderma fibroblasts. J Immunol. 2001 Dec 15;167(12):7126–7133. doi: 10.4049/jimmunol.167.12.7126. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES