Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2004 Apr;5(3):281–284. doi: 10.1002/cfg.395

On the Tetraploid Origin of the Maize Genome

Zuzana Swigonova 1,, Jinsheng Lai 1, Jianxin Ma 2,3, Wusirika Ramakrishna 2,4, Victor Llaca 1,5, Jeffrey L Bennetzen 2,3, Joachim Messing 1
PMCID: PMC2447450  PMID: 18629160

Abstract

Data from cytological and genetic mapping studies suggest that maize arose as a tetraploid. Two previous studies investigating the most likely mode of maize origin arrived at different conclusions. Gaut and Doebley [7] proposed a segmental allotetraploid origin of the maize genome and estimated that the two maize progenitors diverged at 20.5 million years ago (mya). In a similar study, using larger data set, Brendel and colleagues (quoted in [8]) suggested a single genome duplication at 16 mya. One of the key components of such analyses is to examine sequence divergence among strictly orthologous genes. In order to identify such genes, Lai and colleagues [10] sequenced five duplicated chromosomal regions from the maize genome and the orthologous counterparts from the sorghum genome. They also identified the orthologous regions in rice. Using positional information of genetic components, they identified 11 orthologous genes across the two duplicated regions of maize, and the sorghum and rice regions. Swigonova et al. [12] analyzed the 11 orthologues, and showed that all five maize chromosomal regions duplicated at the same time, supporting a tetraploid origin of maize, and that the two maize progenitors diverged from each other at about the same time as each of them diverged from sorghum, about 11.9 mya.

Full Text

The Full Text of this article is available as a PDF (86.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn S., Tanksley S. D. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7980–7984. doi: 10.1073/pnas.90.17.7980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eckardt Nancy A. Maize Genetics 2003. Plant Cell. 2003 May;15(5):1053–1055. doi: 10.1105/tpc.150520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gale M. D., Devos K. M. Plant comparative genetics after 10 years. Science. 1998 Oct 23;282(5389):656–659. doi: 10.1126/science.282.5389.656. [DOI] [PubMed] [Google Scholar]
  4. Gaut B. S., Doebley J. F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6809–6814. doi: 10.1073/pnas.94.13.6809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goodman M. M., Stuber C. W., Newton K., Weissinger H. H. Linkage relationships of 19 enzyme Loci in maize. Genetics. 1980 Nov;96(3):697–710. doi: 10.1093/genetics/96.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Helentjaris T., Weber D., Wright S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics. 1988 Feb;118(2):353–363. doi: 10.1093/genetics/118.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McMillin D. E., Scandalios J. G. Duplicated cytosolic malate dehydrogenase genes in Zea mays. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4866–4870. doi: 10.1073/pnas.77.8.4866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. SanMiguel P., Gaut B. S., Tikhonov A., Nakajima Y., Bennetzen J. L. The paleontology of intergene retrotransposons of maize. Nat Genet. 1998 Sep;20(1):43–45. doi: 10.1038/1695. [DOI] [PubMed] [Google Scholar]
  9. Whitkus R., Doebley J., Lee M. Comparative genome mapping of Sorghum and maize. Genetics. 1992 Dec;132(4):1119–1130. doi: 10.1093/genetics/132.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wolfe K. H., Gouy M., Yang Y. W., Sharp P. M., Li W. H. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6201–6205. doi: 10.1073/pnas.86.16.6201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. doi: 10.1093/bioinformatics/13.5.555. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES