Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2004 Jun;5(4):328–341. doi: 10.1002/cfg.406

Evolution and Cellular Function of Monothiol Glutaredoxins: Involvement in Iron-Sulphur Cluster Assembly

Felipe Vilella 1, Rui Alves 1, María Teresa Rodríguez-Manzaneque 1, Gemma Bellí 1, Swarna Swaminathan 2, Per Sunnerhagen 2, Enrique Herrero 1,
PMCID: PMC2447459  PMID: 18629168

Abstract

A number of bacterial species, mostly proteobacteria, possess monothiol glutaredoxins homologous to the Saccharomyces cerevisiae mitochondrial protein Grx5, which is involved in iron–sulphur cluster synthesis. Phylogenetic profiling is used to predict that bacterial monothiol glutaredoxins also participate in the iron–sulphur cluster (ISC) assembly machinery, because their phylogenetic profiles are similar to the profiles of the bacterial homologues of yeast ISC proteins. High evolutionary co-occurrence is observed between the Grx5 homologues and the homologues of the Yah1 ferredoxin, the scaffold proteins Isa1 and Isa2, the frataxin protein Yfh1 and the Nfu1 protein. This suggests that a specific functional interaction exists between these ISC machinery proteins. Physical interaction analyses using low-definition protein docking predict the formation of strong and specific complexes between Grx5 and several components of the yeast ISC machinery. Two-hybrid analysis has confirmed the in vivo interaction between Grx5 and Isa1. Sequence comparison techniques and cladistics indicate that the other two monothiol glutaredoxins of S. cerevisiae, Grx3 and Grx4, have evolved from the fusion of a thioredoxin gene with a monothiol glutaredoxin gene early in the eukaryotic lineage, leading to differential functional specialization. While bacteria do not contain these chimaeric glutaredoxins, in many eukaryotic species Grx5 and Grx3/4-type monothiol glutaredoxins coexist in the cell.

Full Text

The Full Text of this article is available as a PDF (264.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agar J. N., Krebs C., Frazzon J., Huynh B. H., Dean D. R., Johnson M. K. IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry. 2000 Jul 11;39(27):7856–7862. doi: 10.1021/bi000931n. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersson S. G., Zomorodipour A., Andersson J. O., Sicheritz-Pontén T., Alsmark U. C., Podowski R. M., Näslund A. K., Eriksson A. S., Winkler H. H., Kurland C. G. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature. 1998 Nov 12;396(6707):133–140. doi: 10.1038/24094. [DOI] [PubMed] [Google Scholar]
  4. Babcock M., de Silva D., Oaks R., Davis-Kaplan S., Jiralerspong S., Montermini L., Pandolfo M., Kaplan J. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science. 1997 Jun 13;276(5319):1709–1712. doi: 10.1126/science.276.5319.1709. [DOI] [PubMed] [Google Scholar]
  5. Bates P. A., Kelley L. A., MacCallum R. M., Sternberg M. J. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins. 2001;Suppl 5:39–46. doi: 10.1002/prot.1168. [DOI] [PubMed] [Google Scholar]
  6. Benson Dennis A., Karsch-Mizrachi Ilene, Lipman David J., Ostell James, Rapp Barbara A., Wheeler David L. GenBank. Nucleic Acids Res. 2002 Jan 1;30(1):17–20. doi: 10.1093/nar/30.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Branda S. S., Yang Z. Y., Chew A., Isaya G. Mitochondrial intermediate peptidase and the yeast frataxin homolog together maintain mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum Mol Genet. 1999 Jun;8(6):1099–1110. doi: 10.1093/hmg/8.6.1099. [DOI] [PubMed] [Google Scholar]
  8. Brocchieri L., Karlin S. A symmetric-iterated multiple alignment of protein sequences. J Mol Biol. 1998 Feb 13;276(1):249–264. doi: 10.1006/jmbi.1997.1527. [DOI] [PubMed] [Google Scholar]
  9. Bushweller J. H., Aslund F., Wüthrich K., Holmgren A. Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14----S) and its mixed disulfide with glutathione. Biochemistry. 1992 Sep 29;31(38):9288–9293. doi: 10.1021/bi00153a023. [DOI] [PubMed] [Google Scholar]
  10. Claros M. G., Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996 Nov 1;241(3):779–786. doi: 10.1111/j.1432-1033.1996.00779.x. [DOI] [PubMed] [Google Scholar]
  11. Ding H., Demple B. Glutathione-mediated destabilization in vitro of [2Fe-2S] centers in the SoxR regulatory protein. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9449–9453. doi: 10.1073/pnas.93.18.9449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Draculic T., Dawes I. W., Grant C. M. A single glutaredoxin or thioredoxin gene is essential for viability in the yeast Saccharomyces cerevisiae. Mol Microbiol. 2000 Jun;36(5):1167–1174. doi: 10.1046/j.1365-2958.2000.01948.x. [DOI] [PubMed] [Google Scholar]
  13. Ettema T., van der Oost J., Huynen M. Modularity in the gain and loss of genes: applications for function prediction. Trends Genet. 2001 Sep;17(9):485–487. doi: 10.1016/s0168-9525(01)02384-8. [DOI] [PubMed] [Google Scholar]
  14. Gaasterland T., Ragan M. A. Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes. Microb Comp Genomics. 1998;3(4):199–217. doi: 10.1089/omi.1.1998.3.199. [DOI] [PubMed] [Google Scholar]
  15. Herrero Enrique, Ros Joaquim. Glutaredoxins and oxidative stress defense in yeast. Methods Enzymol. 2002;348:136–146. doi: 10.1016/s0076-6879(02)48633-8. [DOI] [PubMed] [Google Scholar]
  16. Ho Yuen, Gruhler Albrecht, Heilbut Adrian, Bader Gary D., Moore Lynda, Adams Sally-Lin, Millar Anna, Taylor Paul, Bennett Keiryn, Boutilier Kelly. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002 Jan 10;415(6868):180–183. doi: 10.1038/415180a. [DOI] [PubMed] [Google Scholar]
  17. Holmgren A., Aslund F. Glutaredoxin. Methods Enzymol. 1995;252:283–292. doi: 10.1016/0076-6879(95)52031-7. [DOI] [PubMed] [Google Scholar]
  18. Huynen M. A., Snel B., Bork P., Gibson T. J. The phylogenetic distribution of frataxin indicates a role in iron-sulfur cluster protein assembly. Hum Mol Genet. 2001 Oct 1;10(21):2463–2468. doi: 10.1093/hmg/10.21.2463. [DOI] [PubMed] [Google Scholar]
  19. Huynen M., Snel B., Lathe W., 3rd, Bork P. Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res. 2000 Aug;10(8):1204–1210. doi: 10.1101/gr.10.8.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Isaya G., Kalousek F. Mitochondrial intermediate peptidase. Methods Enzymol. 1995;248:556–567. doi: 10.1016/0076-6879(95)48035-8. [DOI] [PubMed] [Google Scholar]
  21. Isaya G., Miklos D., Rollins R. A. MIP1, a new yeast gene homologous to the rat mitochondrial intermediate peptidase gene, is required for oxidative metabolism in Saccharomyces cerevisiae. Mol Cell Biol. 1994 Aug;14(8):5603–5616. doi: 10.1128/mcb.14.8.5603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kato Shin-ichiro, Mihara Hisaaki, Kurihara Tatsuo, Takahashi Yasuhiro, Tokumoto Umechiyo, Yoshimura Tohru, Esaki Nobuyoshi. Cys-328 of IscS and Cys-63 of IscU are the sites of disulfide bridge formation in a covalently bound IscS/IscU complex: implications for the mechanism of iron-sulfur cluster assembly. Proc Natl Acad Sci U S A. 2002 Apr 23;99(9):5948–5952. doi: 10.1073/pnas.082123599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kispal G., Csere P., Prohl C., Lill R. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 1999 Jul 15;18(14):3981–3989. doi: 10.1093/emboj/18.14.3981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Korbel Jan O., Snel Berend, Huynen Martijn A., Bork Peer. SHOT: a web server for the construction of genome phylogenies. Trends Genet. 2002 Mar;18(3):158–162. doi: 10.1016/s0168-9525(01)02597-5. [DOI] [PubMed] [Google Scholar]
  25. Lange H., Lisowsky T., Gerber J., Mühlenhoff U., Kispal G., Lill R. An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins. EMBO Rep. 2001 Aug;2(8):715–720. doi: 10.1093/embo-reports/kve161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lemaire C., Robineau S., Netter P. Molecular and biochemical analysis of Saccharomyces cerevisiae cox1 mutants. Curr Genet. 1998 Aug;34(2):138–145. doi: 10.1007/s002940050378. [DOI] [PubMed] [Google Scholar]
  27. Lill R., Kispal G. Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci. 2000 Aug;25(8):352–356. doi: 10.1016/s0968-0004(00)01589-9. [DOI] [PubMed] [Google Scholar]
  28. Luikenhuis S., Perrone G., Dawes I. W., Grant C. M. The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell. 1998 May;9(5):1081–1091. doi: 10.1091/mbc.9.5.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Manzella L., Barros M. H., Nobrega F. G. ARH1 of Saccharomyces cerevisiae: a new essential gene that codes for a protein homologous to the human adrenodoxin reductase. Yeast. 1998 Jun 30;14(9):839–846. doi: 10.1002/(SICI)1097-0061(19980630)14:9<839::AID-YEA283>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  30. Marcotte E. M., Pellegrini M., Ng H. L., Rice D. W., Yeates T. O., Eisenberg D. Detecting protein function and protein-protein interactions from genome sequences. Science. 1999 Jul 30;285(5428):751–753. doi: 10.1126/science.285.5428.751. [DOI] [PubMed] [Google Scholar]
  31. Miran S. G., Lawson J. E., Reed L. J. Characterization of PDH beta 1, the structural gene for the pyruvate dehydrogenase beta subunit from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1252–1256. doi: 10.1073/pnas.90.4.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mühlenhoff U., Lill R. Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Biochim Biophys Acta. 2000 Aug 15;1459(2-3):370–382. doi: 10.1016/s0005-2728(00)00174-2. [DOI] [PubMed] [Google Scholar]
  33. Mühlenhoff Ulrich, Gerber Jana, Richhardt Nadine, Lill Roland. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J. 2003 Sep 15;22(18):4815–4825. doi: 10.1093/emboj/cdg446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nett J. H., Denke E., Trumpower B. L. Two-step processing is not essential for the import and assembly of functionally active iron-sulfur protein into the cytochrome bc1 complex in Saccharomyces cerevisiae. J Biol Chem. 1997 Jan 24;272(4):2212–2217. doi: 10.1074/jbc.272.4.2212. [DOI] [PubMed] [Google Scholar]
  35. Neupert W. Protein import into mitochondria. Annu Rev Biochem. 1997;66:863–917. doi: 10.1146/annurev.biochem.66.1.863. [DOI] [PubMed] [Google Scholar]
  36. Pedrajas J. R., Kosmidou E., Miranda-Vizuete A., Gustafsson J. A., Wright A. P., Spyrou G. Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J Biol Chem. 1999 Mar 5;274(10):6366–6373. doi: 10.1074/jbc.274.10.6366. [DOI] [PubMed] [Google Scholar]
  37. Peters J. W., Fisher K., Dean D. R. Nitrogenase structure and function: a biochemical-genetic perspective. Annu Rev Microbiol. 1995;49:335–366. doi: 10.1146/annurev.mi.49.100195.002003. [DOI] [PubMed] [Google Scholar]
  38. Powis G., Montfort W. R. Properties and biological activities of thioredoxins. Annu Rev Pharmacol Toxicol. 2001;41:261–295. doi: 10.1146/annurev.pharmtox.41.1.261. [DOI] [PubMed] [Google Scholar]
  39. Rodríguez-Manzaneque M. T., Ros J., Cabiscol E., Sorribas A., Herrero E. Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Dec;19(12):8180–8190. doi: 10.1128/mcb.19.12.8180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rodríguez-Manzaneque María Teresa, Tamarit Jordi, Bellí Gemma, Ros Joaquim, Herrero Enrique. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell. 2002 Apr;13(4):1109–1121. doi: 10.1091/mbc.01-10-0517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rodríguez-Navarro Susana, Llorente Bertrand, Rodríguez-Manzaneque María Teresa, Ramne Anna, Uber Genoveva, Marchesan Denis, Dujon Bernard, Herrero Enrique, Sunnerhagen Per, Pérez-Ortín José E. Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6. Yeast. 2002 Oct;19(14):1261–1276. doi: 10.1002/yea.916. [DOI] [PubMed] [Google Scholar]
  42. Rupp Steffen. LacZ assays in yeast. Methods Enzymol. 2002;350:112–131. doi: 10.1016/s0076-6879(02)50959-9. [DOI] [PubMed] [Google Scholar]
  43. Shigenobu S., Watanabe H., Hattori M., Sakaki Y., Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature. 2000 Sep 7;407(6800):81–86. doi: 10.1038/35024074. [DOI] [PubMed] [Google Scholar]
  44. Silberg J. J., Hoff K. G., Tapley T. L., Vickery L. E. The Fe/S assembly protein IscU behaves as a substrate for the molecular chaperone Hsc66 from Escherichia coli. J Biol Chem. 2000 Oct 26;276(3):1696–1700. doi: 10.1074/jbc.M009542200. [DOI] [PubMed] [Google Scholar]
  45. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vakser Ilya A., Jiang Sulin. Strategies for modeling the interactions of transmembrane helices of G protein-coupled receptors by geometric complementarity using the GRAMM computer algorithm. Methods Enzymol. 2002;343:313–328. doi: 10.1016/s0076-6879(02)43144-8. [DOI] [PubMed] [Google Scholar]
  47. Witte S., Villalba M., Bi K., Liu Y., Isakov N., Altman A. Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-interacting protein with a thioredoxin homology domain. J Biol Chem. 2000 Jan 21;275(3):1902–1909. doi: 10.1074/jbc.275.3.1902. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES