Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2002 Aug;3(4):348–351. doi: 10.1002/cfg.183

The Heat Shock Response of Mycobacterium Tuberculosis: Linking Gene Expression, Immunology and Pathogenesis

Graham R Stewart 1,, Lorenz Wernisch 2, Richard Stabler 3, Joseph A Mangan 3, Jason Hinds 3, Ken G Laing 3, Philip D Butcher 3, Douglas B Young 1
PMCID: PMC2448437  PMID: 18629273

Abstract

The regulation of heat shock protein (HSP) expression is critically important to pathogens such as Mycobacterium tuberculosis and dysregulation of the heat shock response results in increased immune recognition of the bacterium and reduced survival during chronic infection. In this study we use a whole genome spotted microarray to characterize the heat shock response of M. tuberculosis. We also begin a dissection of this important stress response by generating deletion mutants that lack specific transcriptional regulators and examining their transcriptional profiles under different stresses. Understanding the stimuli and mechanisms that govern heat shock in mycobacteria will allow us to relate observed in vivo expression patterns of HSPs to particular stresses and physiological conditions. The mechanisms controlling HSP expression also make attractive drug targets as part of a strategy designed to enhance immune recognition of the bacterium.

Full Text

The Full Text of this article is available as a PDF (86.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold-Schild D., Hanau D., Spehner D., Schmid C., Rammensee H. G., de la Salle H., Schild H. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol. 1999 Apr 1;162(7):3757–3760. [PubMed] [Google Scholar]
  2. Asea A., Kraeft S. K., Kurt-Jones E. A., Stevenson M. A., Chen L. B., Finberg R. W., Koo G. C., Calderwood S. K. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000 Apr;6(4):435–442. doi: 10.1038/74697. [DOI] [PubMed] [Google Scholar]
  3. Basu S., Binder R. J., Ramalingam T., Srivastava P. K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. 2001 Mar;14(3):303–313. doi: 10.1016/s1074-7613(01)00111-x. [DOI] [PubMed] [Google Scholar]
  4. Binder R. J., Han D. K., Srivastava P. K. CD91: a receptor for heat shock protein gp96. Nat Immunol. 2000 Aug;1(2):151–155. doi: 10.1038/77835. [DOI] [PubMed] [Google Scholar]
  5. Bucca G., Brassington A. M., Schönfeld H. J., Smith C. P. The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressordagger. Mol Microbiol. 2000 Dec;38(5):1093–1103. doi: 10.1046/j.1365-2958.2000.02194.x. [DOI] [PubMed] [Google Scholar]
  6. Bucca G., Ferina G., Puglia A. M., Smith C. P. The dnaK operon of Streptomyces coelicolor encodes a novel heat-shock protein which binds to the promoter region of the operon. Mol Microbiol. 1995 Aug;17(4):663–674. doi: 10.1111/j.1365-2958.1995.mmi_17040663.x. [DOI] [PubMed] [Google Scholar]
  7. Buchmeier N. A., Heffron F. Induction of Salmonella stress proteins upon infection of macrophages. Science. 1990 May 11;248(4956):730–732. doi: 10.1126/science.1970672. [DOI] [PubMed] [Google Scholar]
  8. Castellino F., Boucher P. E., Eichelberg K., Mayhew M., Rothman J. E., Houghton A. N., Germain R. N. Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med. 2000 Jun 5;191(11):1957–1964. doi: 10.1084/jem.191.11.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen W., Syldath U., Bellmann K., Burkart V., Kolb H. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol. 1999 Mar 15;162(6):3212–3219. [PubMed] [Google Scholar]
  10. Cho B. K., Palliser D., Guillen E., Wisniewski J., Young R. A., Chen J., Eisen H. N. A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity. 2000 Mar;12(3):263–272. doi: 10.1016/s1074-7613(00)80179-x. [DOI] [PubMed] [Google Scholar]
  11. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S., Barry C. E., 3rd Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537–544. doi: 10.1038/31159. [DOI] [PubMed] [Google Scholar]
  12. Fernandes N. D., Wu Q. L., Kong D., Puyang X., Garg S., Husson R. N. A mycobacterial extracytoplasmic sigma factor involved in survival following heat shock and oxidative stress. J Bacteriol. 1999 Jul;181(14):4266–4274. doi: 10.1128/jb.181.14.4266-4274.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garbe T. R., Hibler N. S., Deretic V. Response to reactive nitrogen intermediates in Mycobacterium tuberculosis: induction of the 16-kilodalton alpha-crystallin homolog by exposure to nitric oxide donors. Infect Immun. 1999 Jan;67(1):460–465. doi: 10.1128/iai.67.1.460-465.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hartl F. U. Molecular chaperones in cellular protein folding. Nature. 1996 Jun 13;381(6583):571–579. doi: 10.1038/381571a0. [DOI] [PubMed] [Google Scholar]
  15. Hecker M., Schumann W., Völker U. Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol. 1996 Feb;19(3):417–428. doi: 10.1046/j.1365-2958.1996.396932.x. [DOI] [PubMed] [Google Scholar]
  16. Helmann J. D. Anti-sigma factors. Curr Opin Microbiol. 1999 Apr;2(2):135–141. doi: 10.1016/S1369-5274(99)80024-1. [DOI] [PubMed] [Google Scholar]
  17. Huang Q., Richmond J. F., Suzue K., Eisen H. N., Young R. A. In vivo cytotoxic T lymphocyte elicitation by mycobacterial heat shock protein 70 fusion proteins maps to a discrete domain and is CD4(+) T cell independent. J Exp Med. 2000 Jan 17;191(2):403–408. doi: 10.1084/jem.191.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Köhler Stephan, Ekaza Euloge, Paquet Jean-Yves, Walravens Karl, Teyssier Jacques, Godfroid Jacques, Liautard Jean-Pierre. Induction of dnaK through its native heat shock promoter is necessary for intramacrophagic replication of Brucella suis. Infect Immun. 2002 Mar;70(3):1631–1634. doi: 10.1128/IAI.70.3.1631-1634.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee B. Y., Horwitz M. A. Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. J Clin Invest. 1995 Jul;96(1):245–249. doi: 10.1172/JCI118028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lehner T., Bergmeier L. A., Wang Y., Tao L., Sing M., Spallek R., van der Zee R. Heat shock proteins generate beta-chemokines which function as innate adjuvants enhancing adaptive immunity. Eur J Immunol. 2000 Feb;30(2):594–603. doi: 10.1002/1521-4141(200002)30:2<594::AID-IMMU594>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  21. Monahan I. M., Betts J., Banerjee D. K., Butcher P. D. Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology. 2001 Feb;147(Pt 2):459–471. doi: 10.1099/00221287-147-2-459. [DOI] [PubMed] [Google Scholar]
  22. Peetermans W. E., Raats C. J., van Furth R., Langermans J. A. Mycobacterial 65-kilodalton heat shock protein induces tumor necrosis factor alpha and interleukin 6, reactive nitrogen intermediates, and toxoplasmastatic activity in murine peritoneal macrophages. Infect Immun. 1995 Sep;63(9):3454–3458. doi: 10.1128/iai.63.9.3454-3458.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Qoronfleh M. W., Bortner C. A., Schwartzberg P., Wilkinson B. J. Enhanced levels of Staphylococcus aureus stress protein GroEL and DnaK homologs early in infection of human epithelial cells. Infect Immun. 1998 Jun;66(6):3024–3027. doi: 10.1128/iai.66.6.3024-3027.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Raman S., Song T., Puyang X., Bardarov S., Jacobs W. R., Jr, Husson R. N. The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J Bacteriol. 2001 Oct;183(20):6119–6125. doi: 10.1128/JB.183.20.6119-6125.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sherman D. R., Voskuil M., Schnappinger D., Liao R., Harrell M. I., Schoolnik G. K. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7534–7539. doi: 10.1073/pnas.121172498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Srivastava P. K., Menoret A., Basu S., Binder R. J., McQuade K. L. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity. 1998 Jun;8(6):657–665. doi: 10.1016/s1074-7613(00)80570-1. [DOI] [PubMed] [Google Scholar]
  27. Stewart G. R., Snewin V. A., Walzl G., Hussell T., Tormay P., O'Gaora P., Goyal M., Betts J., Brown I. N., Young D. B. Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. Nat Med. 2001 Jun;7(6):732–737. doi: 10.1038/89113. [DOI] [PubMed] [Google Scholar]
  28. Suto R., Srivastava P. K. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science. 1995 Sep 15;269(5230):1585–1588. doi: 10.1126/science.7545313. [DOI] [PubMed] [Google Scholar]
  29. Suzue K., Zhou X., Eisen H. N., Young R. A. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13146–13151. doi: 10.1073/pnas.94.24.13146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tusher V. G., Tibshirani R., Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001 Apr 17;98(9):5116–5121. doi: 10.1073/pnas.091062498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vabulas R. M., Ahmad-Nejad P., da Costa C., Miethke T., Kirschning C. J., Häcker H., Wagner H. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem. 2001 Jun 11;276(33):31332–31339. doi: 10.1074/jbc.M103217200. [DOI] [PubMed] [Google Scholar]
  32. Vabulas Ramunas M., Ahmad-Nejad Parviz, Ghose Sanghamitra, Kirschning Carsten J., Issels Rolf D., Wagner Hermann. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem. 2002 Feb 12;277(17):15107–15112. doi: 10.1074/jbc.M111204200. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES