Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Jan;35(1):104–110. doi: 10.1128/aac.35.1.104

In vitro antibacterial activity of KP-736, a new cephem antibiotic.

T Maejima 1, M Inoue 1, S Mitsuhashi 1
PMCID: PMC244949  PMID: 2014964

Abstract

KP-736, a new cephen antibiotic with a broad antibacterial spectrum and potent antipseudomonal activity, was evaluated for in vitro antibacterial activity in comparison with ceftazidime, cefotaxime, and cefpirome. KP-736 was significantly more active than the test compounds against gram-negative bacteria, including the Pseudomonas group and ceftazidime-, cefotaxime-, or imipenem-resistant strains, but less active against gram-positive bacteria. KP-736 had very high affinities for penicillin-binding protein 3 (PBP 3) of Escherichia coli K-12 and PBP 1A and PBP 3 of Pseudomonas aerugiosa NCTC 10490 and showed potent bactericidal activities against these two strains. It was stable to hydrolysis by penicillinases and cephalosporinases but was slightly hydrolyzed by oxyiminocephalosporinases and type II penicillinase.

Full text

PDF
106

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basker M. J., Branch C. L., Finch S. C., Guest A. W., Milner P. H., Pearson M. J., Ponsford R. J., Smale T. C. Studies on semi-synthetic 7 alpha-formamidocephalosporins. I. Structure-activity relationships in some semi-synthetic 7 alpha-formamidocephalosporins. J Antibiot (Tokyo) 1986 Dec;39(12):1788–1791. doi: 10.7164/antibiotics.39.1788. [DOI] [PubMed] [Google Scholar]
  2. Curtis N. A., Eisenstadt R. L., East S. J., Cornford R. J., Walker L. A., White A. J. Iron-regulated outer membrane proteins of Escherichia coli K-12 and mechanism of action of catechol-substituted cephalosporins. Antimicrob Agents Chemother. 1988 Dec;32(12):1879–1886. doi: 10.1128/aac.32.12.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hikida M., Inoue M., Mitsuhashi S. In-vitro antibacterial activity of L-105, a new cephalosporin. J Antimicrob Chemother. 1986 Nov;18(5):585–591. doi: 10.1093/jac/18.5.585. [DOI] [PubMed] [Google Scholar]
  4. Katsu K., Kitoh K., Inoue M., Mitsuhashi S. In vitro antibacterial activity of E-0702, a new semisynthetic cephalosporin. Antimicrob Agents Chemother. 1982 Aug;22(2):181–185. doi: 10.1128/aac.22.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kojima T., Inoue M., Mitsuhashi S. In vitro activity of AT-4140 against clinical bacterial isolates. Antimicrob Agents Chemother. 1989 Nov;33(11):1980–1988. doi: 10.1128/aac.33.11.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Masuyoshi S., Arai S., Miyamoto M., Mitsuhashi S. In vitro antimicrobial activity of cefotaxime, a new cephalosporin. Antimicrob Agents Chemother. 1980 Jul;18(1):1–8. doi: 10.1128/aac.18.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mochida K., Ono Y., Yamasaki M., Shiraki C., Hirata T., Sato K., Okachi R. Aminothiazolylglycyl derivatives of carbacephem antibiotics. II. Synthesis and antibacterial activity of novel aminothiazolyl cephem compounds with hydroxypyridone moiety. J Antibiot (Tokyo) 1987 Feb;40(2):182–189. doi: 10.7164/antibiotics.40.182. [DOI] [PubMed] [Google Scholar]
  8. Mochizuki H., Oikawa Y., Yamada H., Kusakabe S., Shiihara T., Murakami K., Kato K., Ishiguro J., Kosuzume H. Antibacterial and pharmacokinetic properties of M14659, a new injectable semisynthetic cephalosporin. J Antibiot (Tokyo) 1988 Mar;41(3):377–391. doi: 10.7164/antibiotics.41.377. [DOI] [PubMed] [Google Scholar]
  9. Mochizuki H., Yamada H., Oikawa Y., Murakami K., Ishiguro J., Kosuzume H., Aizawa N., Mochida E. Bactericidal activity of M14659 enhanced in low-iron environments. Antimicrob Agents Chemother. 1988 Nov;32(11):1648–1654. doi: 10.1128/aac.32.11.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nakagawa S., Sanada M., Matsuda K., Hashizume T., Asahi Y., Ushijima R., Ohtake N., Tanaka N. In vitro and in vivo antibacterial activities of BO-1341, a new antipseudomonal cephalosporin. Antimicrob Agents Chemother. 1989 Sep;33(9):1423–1427. doi: 10.1128/aac.33.9.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nakagawa S., Sanada M., Matsuda K., Hazumi N., Tanaka N. Biological activity of BO-1236, a new antipseudomonal cephalosporin. Antimicrob Agents Chemother. 1987 Jul;31(7):1100–1105. doi: 10.1128/aac.31.7.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ohi N., Aoki B., Shinozaki T., Moro K., Noto T., Nehashi T., Okazaki H., Matsunaga I. Semisynthetic beta-lactam antibiotics. I. Synthesis and antibacterial activity of new ureidopenicillin derivatives having catechol moieties. J Antibiot (Tokyo) 1986 Feb;39(2):230–241. doi: 10.7164/antibiotics.39.230. [DOI] [PubMed] [Google Scholar]
  13. Preheim L. C., Penn R. G., Sanders C. C., Goering R. V., Giger D. K. Emergence of resistance to beta-lactam and aminoglycoside antibiotics during moxalactam therapy of Pseudomonas aeruginosa infections. Antimicrob Agents Chemother. 1982 Dec;22(6):1037–1041. doi: 10.1128/aac.22.6.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Richmond M. H., Sykes R. B. The beta-lactamases of gram-negative bacteria and their possible physiological role. Adv Microb Physiol. 1973;9:31–88. doi: 10.1016/s0065-2911(08)60376-8. [DOI] [PubMed] [Google Scholar]
  15. Sanders C. C., Sanders W. E., Jr Emergence of resistance during therapy with the newer beta-lactam antibiotics: role of inducible beta-lactamases and implications for the future. Rev Infect Dis. 1983 Jul-Aug;5(4):639–648. doi: 10.1093/clinids/5.4.639. [DOI] [PubMed] [Google Scholar]
  16. Sanders C. C., Sanders W. E., Jr Microbial resistance to newer generation beta-lactam antibiotics: clinical and laboratory implications. J Infect Dis. 1985 Mar;151(3):399–406. doi: 10.1093/infdis/151.3.399. [DOI] [PubMed] [Google Scholar]
  17. Spratt B. G. Properties of the penicillin-binding proteins of Escherichia coli K12,. Eur J Biochem. 1977 Jan;72(2):341–352. doi: 10.1111/j.1432-1033.1977.tb11258.x. [DOI] [PubMed] [Google Scholar]
  18. Sumita Y., Fukasawa M., Okuda T. Comparison of two carbapenems, SM-7338 and imipenem: affinities for penicillin-binding proteins and morphological changes. J Antibiot (Tokyo) 1990 Mar;43(3):314–320. doi: 10.7164/antibiotics.43.314. [DOI] [PubMed] [Google Scholar]
  19. Waley S. G. A spectrophotometric assay of beta-lactamase action on penicillins. Biochem J. 1974 Jun;139(3):789–790. doi: 10.1042/bj1390789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Watanabe N. A., Nagasu T., Katsu K., Kitoh K. E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrob Agents Chemother. 1987 Apr;31(4):497–504. doi: 10.1128/aac.31.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wise R., Andrews J. M., Bedford K. A. Comparison of in vitro activity of GR 20263, a novel cephalosporin derivative, with activities of other beta-lactam compounds. Antimicrob Agents Chemother. 1980 May;17(5):884–889. doi: 10.1128/aac.17.5.884. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES