Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Feb;35(2):358–364. doi: 10.1128/aac.35.2.358

Altered phenotypes associated with ampD mutations in Enterobacter cloacae.

G Korfmann 1, C C Sanders 1, E S Moland 1
PMCID: PMC245005  PMID: 2024967

Abstract

A study was done to determine the genetic locus responsible for altered expression of AmpC beta-lactamase in Enterobacter cloacae 1194E and several mutants derived from E. cloacae 029. These phenotypes were defined by units of enzyme activity found in sonic extracts of cells before and after induction with cefoxitin and included (units uninduced/units induced) the wild-type (7/219), high-level constitutive (10,911/10,862), temperature-sensitive (at 30 degrees C 82/706 and at 42 degrees C 5,031/6,020), and hyperinducible (19/1,688) phenotypes. When the ampD region of each E. cloacae strain was cloned and introduced into an ampD mutant Escherichia coli strain, the altered phenotypes were found to reside within this locus. Furthermore, transformants containing wild-type ampD were poorly inducible at 42 degrees C while those with high-level constitutive or hyperinducible ampD were unaffected by temperature. Since the source of ampD was the only variable in these E. coli transformants, these results suggested that ampD encodes a protein that is involved in sensing the inducer. To test this possibility, the responses to different inducers of E. coli transformants containing various ampD regions were assessed. In the presence of wild-type ampD, transformants responded equally to cefoxitin and cefotetan, regardless of temperature. In the presence of temperature-sensitive ampD, induction by cefotetan was similar to that by cefoxitin at 30 degrees C but greater than that by cefoxitin at 42 degrees C. These results suggest that ampD encodes a protein involved in induction of AmpC beta-lactamase in E. cloacae.

Full text

PDF
358

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chang A. C., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. doi: 10.1128/jb.134.3.1141-1156.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clewell D. B., Helinski D. R. Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an opern circular DNA form. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1159–1166. doi: 10.1073/pnas.62.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Curtis N. A., East S. J., Cornford R. J., Walker L. A. Properties of spontaneous Enterobacter cloacae mutants with temperature-conditional derepression of type I beta-lactamase synthesis. J Antimicrob Chemother. 1987 Apr;19(4):417–427. doi: 10.1093/jac/19.4.417. [DOI] [PubMed] [Google Scholar]
  5. Edlund T., Grundström T., Normark S. Isolation and characterization of DNA repetitions carrying the chromosomal beta-lactamase gene of Escherichia coli K-12. Mol Gen Genet. 1979 Jun 7;173(2):115–125. doi: 10.1007/BF00330301. [DOI] [PubMed] [Google Scholar]
  6. Goering R. V., Sanders C. C., Sanders W. E., Jr, Guay R., Guerin S. Heterogeneity in ampR-ampC gene interaction in Enterobacter cloacae. Rev Infect Dis. 1988 Jul-Aug;10(4):786–792. doi: 10.1093/clinids/10.4.786. [DOI] [PubMed] [Google Scholar]
  7. Gootz T. D., Sanders C. C., Goering R. V. Resistance to cefamandole: derepression of beta-lactamases by cefoxitin and mutation in Enterobacter cloacae. J Infect Dis. 1982 Jul;146(1):34–42. doi: 10.1093/infdis/146.1.34. [DOI] [PubMed] [Google Scholar]
  8. Guerin S., Paradis F., Guay R. Cloning and characterization of chromosomally encoded cephalosporinase gene of Enterobacter cloacae. Can J Microbiol. 1986 Apr;32(4):301–309. doi: 10.1139/m86-061. [DOI] [PubMed] [Google Scholar]
  9. Guest J. R., Stephens P. E. Molecular cloning of the pyruvate dehydrogenase complex genes of Escherichia coli. J Gen Microbiol. 1980 Dec;121(2):277–292. doi: 10.1099/00221287-121-2-277. [DOI] [PubMed] [Google Scholar]
  10. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  11. Honoré N., Nicolas M. H., Cole S. T. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. EMBO J. 1986 Dec 20;5(13):3709–3714. doi: 10.1002/j.1460-2075.1986.tb04704.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Honoré N., Nicolas M. H., Cole S. T. Regulation of enterobacterial cephalosporinase production: the role of a membrane-bound sensory transducer. Mol Microbiol. 1989 Aug;3(8):1121–1130. doi: 10.1111/j.1365-2958.1989.tb00262.x. [DOI] [PubMed] [Google Scholar]
  13. Korfmann G., Sanders C. C. ampG is essential for high-level expression of AmpC beta-lactamase in Enterobacter cloacae. Antimicrob Agents Chemother. 1989 Nov;33(11):1946–1951. doi: 10.1128/aac.33.11.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Korfmann G., Wiedemann B. Genetic control of beta-lactamase production in Enterobacter cloacae. Rev Infect Dis. 1988 Jul-Aug;10(4):793–799. doi: 10.1093/clinids/10.4.793. [DOI] [PubMed] [Google Scholar]
  15. Lindberg F., Lindquist S., Normark S. Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii beta-lactamase. J Bacteriol. 1987 May;169(5):1923–1928. doi: 10.1128/jb.169.5.1923-1928.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lindberg F., Normark S. Common mechanism of ampC beta-lactamase induction in enterobacteria: regulation of the cloned Enterobacter cloacae P99 beta-lactamase gene. J Bacteriol. 1987 Feb;169(2):758–763. doi: 10.1128/jb.169.2.758-763.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lindberg F., Westman L., Normark S. Regulatory components in Citrobacter freundii ampC beta-lactamase induction. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4620–4624. doi: 10.1073/pnas.82.14.4620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lindquist S., Galleni M., Lindberg F., Normark S. Signalling proteins in enterobacterial AmpC beta-lactamase regulation. Mol Microbiol. 1989 Aug;3(8):1091–1102. doi: 10.1111/j.1365-2958.1989.tb00259.x. [DOI] [PubMed] [Google Scholar]
  19. Lindquist S., Lindberg F., Normark S. Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC beta-lactamase gene. J Bacteriol. 1989 Jul;171(7):3746–3753. doi: 10.1128/jb.171.7.3746-3753.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oliva B., Bennett P. M., Chopra I. Penicillin-binding protein 2 is required for induction of the Citrobacter freundii class I chromosomal beta-lactamase in Escherichia coli. Antimicrob Agents Chemother. 1989 Jul;33(7):1116–1117. doi: 10.1128/aac.33.7.1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Peter K., Korfmann G., Wiedemann B. Impact of the ampD gene and its product on beta-lactamase production in Enterobacter cloacae. Rev Infect Dis. 1988 Jul-Aug;10(4):800–805. doi: 10.1093/clinids/10.4.800. [DOI] [PubMed] [Google Scholar]
  22. Richmond M. H., Sykes R. B. The beta-lactamases of gram-negative bacteria and their possible physiological role. Adv Microb Physiol. 1973;9:31–88. doi: 10.1016/s0065-2911(08)60376-8. [DOI] [PubMed] [Google Scholar]
  23. Rose R. E. The nucleotide sequence of pACYC184. Nucleic Acids Res. 1988 Jan 11;16(1):355–355. doi: 10.1093/nar/16.1.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sanders C. C., Sanders W. E., Jr Type I beta-lactamases of gram-negative bacteria: interactions with beta-lactam antibiotics. J Infect Dis. 1986 Nov;154(5):792–800. doi: 10.1093/infdis/154.5.792. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES