Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Oct;120(1):210–218. doi: 10.1128/jb.120.1.210-218.1974

Biosynthesis of Peptidoglycan in Gaffkya homari: Role of the Peptide Subunit of Uridine Diphosphate-N-Acetylmuramyl-Pentapeptide

Walter P Hammes a,1, Francis C Neuhaus a
PMCID: PMC245752  PMID: 4425467

Abstract

The incorporation of N-acetylmuramyl (MurNAc)-peptides from nucleotide-activated precursors (reference: uridine diphosphate [UDP]MurNAc-Ala1-dGlu2-Lys3- dAla4-dAla5) with incomplete or modified peptide subunits into peptidoglycan was studied with membrane preparations from Gaffkya homari. The effectiveness of their utilization at low and high concentrations was compared on the basis of the values of Vmax/Km and Vmax, respectively. At low concentration, replacement of alanine by glycine in position 5 has a small effect on the activity of the peptidoglycan synthesizing system, whereas it has a significantly larger effect in positions 1 and 4. The importance of d-alanine in position 4 at low substrate concentrations is also observed with the incomplete UDP-MurNAc-peptides. For UDP-MurNAc-tripeptide and -tetrapeptide, Vmax/Km is 0.06 and 0.55, respectively, of the value for the -pentapeptide. At high substrate concentration, replacement of d-alanine by glycine in either position 1 or 5 decreases the activity to 0.37 of the value for the reference nucleotide, whereas replacement in position 4 has a smaller effect (0.74). The profiles established from Vmax and Vmax/Km with UDP-MurNAc-tripeptide, -tetrapeptide, and -pentapeptide show good correlation. At low concentration the specificity profiles of phospho-MurNAc-pentapeptide translocase, catalyzing the initial membrane reaction, are similar to those for the peptidoglycan synthesizing system; at high concentration, however, the profiles differ. The translocase appears to provide a primary specificity barrier at high substrate concentration for UDP-MurNAc-Ala-dGlu-Lys-dAla-dAla and UDP-MurNAc-Ala-dGlu-Lys-Gly-dAla, and at low concentration for UDP-MurNAc-Ala-dGlu-Lys and UDP-MurNAc-Ala-dGlu-Lys-Gly-dAla. Moreover, it is suggested that an additional specificity barrier exists in the peptidoglycan synthesizing system for certain nucleotides. Thus, the cytoplasmic enzymes and the membrane-associated enzyme(s) cooperate to insure the formation of functioning peptidoglycan in this organism.

Full text

PDF
211

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANWAR R. A., ROY C., WATSON R. W. Isolation and structure of uridine nucleotide-peptides from Aerobacter cloacae NRC 492. Can J Biochem Physiol. 1963 Apr;41:1065–1072. [PubMed] [Google Scholar]
  2. Anderson J. S., Meadow P. M., Haskin M. A., Strominger J. L. Biosynthesis of the peptidoglycan of bacterial cell walls. I. Utilization of uridine diphosphate acetylmuramyl pentapeptide and uridine diphosphate acetylglucosamine for peptidoglycan synthesis by particulate enzymes from Staphylococcus aureus and Micrococcus lysodeikticus. Arch Biochem Biophys. 1966 Sep 26;116(1):487–515. doi: 10.1016/0003-9861(66)90056-7. [DOI] [PubMed] [Google Scholar]
  3. Hammes W. P., Neuhaus F. C. On the specificity of phospho-N-acetylmuramyl-pentapeptide translocase. The peptide subunit of uridine diphosphate-N-actylmuramyl-pentapeptide. J Biol Chem. 1974 May 25;249(10):3140–3150. [PubMed] [Google Scholar]
  4. Hammes W., Schleifer K. H., Kandler O. Mode of action of glycine on the biosynthesis of peptidoglycan. J Bacteriol. 1973 Nov;116(2):1029–1053. doi: 10.1128/jb.116.2.1029-1053.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Izaki K., Matsuhashi M., Strominger J. L. Biosynthesis of the peptidoglycan of bacterial cell walls. 8. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reaction in strains of Escherichia coli. J Biol Chem. 1968 Jun 10;243(11):3180–3192. [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Lugtenberg E. J., v Schijndel-van Dam A., van Bellegem T. H. In vivo and in vitro action of new antibiotics interfering with the utilization of N-acetyl-glucosamine-N-acetyl-muramyl-pentapeptide. J Bacteriol. 1971 Oct;108(1):20–29. doi: 10.1128/jb.108.1.20-29.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. NEUHAUS F. C., STRUVE W. G. ENZYMATIC SYNTHESIS OF ANALOGS OF THE CELL-WALL PRECURSOR. I. KINETICS AND SPECIFICITY OF URIDINE DIPHOSPHO-N-ACETYLMURAMYL-L-ALANYL-D-GLUTAMYL-L-LYSINE:D-ALANYL-D-ALANINE LIGASE (ADENOSINE DIPHOSPHATE) FROM STREPTOCOCCUS FAECALIS R. Biochemistry. 1965 Jan;4:120–131. doi: 10.1021/bi00877a020. [DOI] [PubMed] [Google Scholar]
  9. Nakel M., Ghuysen J. M., Kandler O. Wall peptidoglycan in Aerococcus viridans strains 201 Evans and ATCC 11563 and in Gaffkya homari strain ATCC 10400. Biochemistry. 1971 May 25;10(11):2170–2175. doi: 10.1021/bi00787a033. [DOI] [PubMed] [Google Scholar]
  10. PATTERSON M. S., GREENE R. C. MEASUREMENT OF LOW ENERGY BETA-EMITTERS IN AQUEOUS SOLUTION BY LIQUID SCINTILLATION COUNTING OF EMULSIONS. Anal Chem. 1965 Jun;37:854–857. doi: 10.1021/ac60226a017. [DOI] [PubMed] [Google Scholar]
  11. Plapp R., Strominger J. L. Biosynthesis of the peptidoglycan of bacterial cell walls. XVII. Biosynthesis of peptidoglycan and of interpeptide bridges in Lactobacillus viridescens. J Biol Chem. 1970 Jul 25;245(14):3667–3674. [PubMed] [Google Scholar]
  12. Reynolds P. E. Peptidoglycan synthesis in bacilli. I. Effect of temperature on the in vitro system from Bacillus megaterium and Bacillus stearothermophilus. Biochim Biophys Acta. 1971 May 18;237(2):239–254. [PubMed] [Google Scholar]
  13. Reynolds P. E. Peptidoglycan synthesis in bacilli. II. Characteristics of protoplast membrane preparations. Biochim Biophys Acta. 1971 May 18;237(2):255–272. doi: 10.1016/0304-4165(71)90316-3. [DOI] [PubMed] [Google Scholar]
  14. Schleifer K. H., Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477. doi: 10.1128/br.36.4.407-477.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Siewert G., Strominger J. L. Biosynthesis of the peptidoglycan of bacterial cell walls. XI. Formation of the isoglutamine amide group in the cell walls of Staphylococcus aureus. J Biol Chem. 1968 Feb 25;243(4):783–790. [PubMed] [Google Scholar]
  16. Ward J. B., Perkins H. R. The direction of glycan synthesis in a bacterial peptidoglycan. Biochem J. 1973 Dec;135(4):721–728. doi: 10.1042/bj1350721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wickus G. G., Strominger J. L. Penicillin-sensitive transpeptidation during peptidoglycan biosynthesis in cell-free preparations from Bacillus megaterium. I. Incorporation of free diaminopimelic acid into peptidoglycan. J Biol Chem. 1972 Sep 10;247(17):5297–5306. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES