Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Dec;120(3):1012–1016. doi: 10.1128/jb.120.3.1012-1016.1974

Cellular Location of Degradative Enzymes in Staphylococcus aureus

K M Nugent 1, E Huff 1, R M Cole 1, T S Theodore 1
PMCID: PMC245878  PMID: 4373433

Abstract

Staphylococus aureus, ATCC 6538P, was fractionated into protoplast membranes, mesosomal vesicles, periplasm, and cytoplasm. These fractions and the culture fluid were then assayed for various degradative enzyme activities. They were not restricted to a single fraction nor dispersed homogeneously, but were distributed predominantly (on the basis of specific activity) as follows: nuclease in the culture fluid; alkaline phosphatase, 5′-nucleotidase, and acid phosphatase in the periplasm; adenosine triphosphatase in the protoplast membrane; and protease (low levels) in mesosomal vesicles. No significant esterase nor cell wall hydrolytic activity was found in any fraction. S. aureus 80/81 was studied for penicillinase activity after induction with benzyl penicillin; this enzyme was localized in the mesosomal vesicles. Electron microscopy did not reveal any ultrastructural changes associated with secretion of the extracellular fraction. Overall, these studies demonstrate that degradative enzymes are located in several surface compartments and that, therefore, the mesosome does not function as a prototype lysosome in S. aureus.

Full text

PDF
1016

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apirion D. Degradation of RNA in Escherichia coli. A hypothesis. Mol Gen Genet. 1973 May 28;122(4):313–322. doi: 10.1007/BF00269431. [DOI] [PubMed] [Google Scholar]
  2. Arvidson S., Holme T., Lindholm B. Studies on extracellular proteolytic enzymes from Staphylococcus aureus. I. Purification and characterization of one neutral and one alkaline protease. Biochim Biophys Acta. 1973 Mar 15;302(1):135–148. doi: 10.1016/0005-2744(73)90016-8. [DOI] [PubMed] [Google Scholar]
  3. Davies P. L., Bragg P. D. Properties of a soluble Ca 2+ - and Mg 2+ -activated ATPase released from Escherichia coli membranes. Biochim Biophys Acta. 1972 Apr 14;266(1):273–284. doi: 10.1016/0005-2736(72)90142-3. [DOI] [PubMed] [Google Scholar]
  4. Ghosh B. K., Sargent M. G., Lampen J. O. Morphological phenomena associated with penicillinase induction and secretion in Bacillus licheniformis. J Bacteriol. 1968 Oct;96(4):1314–1328. doi: 10.1128/jb.96.4.1314-1328.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heppel L. A. Selective release of enzymes from bacteria. Science. 1967 Jun 16;156(3781):1451–1455. doi: 10.1126/science.156.3781.1451. [DOI] [PubMed] [Google Scholar]
  6. Huff E., Silverman C. S. Lysis of Staphylococcus aureus cell walls by a soluble staphylococcal enzyme. J Bacteriol. 1968 Jan;95(1):99–106. doi: 10.1128/jb.95.1.99-106.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Morris H., Schlesinger M. J. Effects of proline analogues on the formation of alkaline phosphatase in Escherichia coli. J Bacteriol. 1972 Jul;111(1):203–210. doi: 10.1128/jb.111.1.203-210.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Owen P., Freer J. H. Isolation and properties of mesosomal membrane fractions from Micrococcus lysodeikticus. Biochem J. 1972 Oct;129(4):907–917. doi: 10.1042/bj1290907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pine M. J. Stringent control of intracellular proteolysis in Escherichia coli. J Bacteriol. 1973 Dec;116(3):1253–1257. doi: 10.1128/jb.116.3.1253-1257.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Popkin T. J., Theodore T. S., Cole R. M. Electron microscopy during release and purification of mesosomal vesicles and protoplast membranes from Staphylococcus aureus. J Bacteriol. 1971 Sep;107(3):907–917. doi: 10.1128/jb.107.3.907-917.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reaveley D. A., Rogers H. J. Some enzymic activities and chemical properties of the mesosomes and cytoplasmic membranes of Bacillus licheniformis 6346. Biochem J. 1969 Jun;113(1):67–79. doi: 10.1042/bj1130067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reusch V. M., Jr, Burger M. M. The bacterial mesosome. Biochim Biophys Acta. 1973 Apr 3;300(1):79–104. doi: 10.1016/0304-4157(73)90012-9. [DOI] [PubMed] [Google Scholar]
  14. Sargent M. G. Rapid fixed-time assay for penicillinase. J Bacteriol. 1968 Apr;95(4):1493–1494. doi: 10.1128/jb.95.4.1493-1494.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Theodore T. S., Popkin T. J., Cole R. M. The separation and isolation of plasma membranes and mesosomal vesicles from Staphylococcus aureus. Prep Biochem. 1971;1(3):233–248. doi: 10.1080/00327487108081942. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES