Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Dec;120(3):1093–1101. doi: 10.1128/jb.120.3.1093-1101.1974

Mutants of Salmonella typhimurium Defective in Transport of Branched-Chain Amino Acids

Kazuyoshi Kiritani 1
PMCID: PMC245887  PMID: 4373435

Abstract

Five mutants, CD15, CD31, CE4, CE5, and CE14, defective in the transport of branched-chain amino acids were isolated as glycyl-l-isoleucine and glycyl-l-valine requirers from an isoleucine-valine-requiring mutant, KA931, of Salmonella typhimurium LT2. Although these transport mutants do not grow in minimal medium supplemented with isoleucine (10 μg/ml) and valine (20 μg/ml), where the parent strain, KA931, grows normally, they do when the supplements are increased 10-fold in concentration, and the growth rate becomes comparable to that of the parent strain. When the apparent Km and Vmax for uptake of isoleucine, valine, and leucine in the transport mutants were compared to those of KA931, the Km was generally lower in the mutants, and the Vmax for isoleucine and leucine decreased to one-fourth to one-seventh and for valine one-eighth to one-fifteenth of that in the parent. In all mutants except CE5, the transport of methionine, arginine, threonine, and glycine was normal. The transport of threonine in CE5 appeared to be slightly impaired. In addition to the original mutation in the ilvC locus, the transport mutant has a mutation at the ilvT locus, which is closely linked to proC and may be located on the side of proC proximal to purE. About 26-fold difference in values of the co-transduction is noted in reciprocal transductions between KA502 and CD15 strains.

Full text

PDF
1096

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Ames G. F., Young J. D., Tsuchiya D., Lecocq J. Illicit transport: the oligopeptide permease. Proc Natl Acad Sci U S A. 1973 Feb;70(2):456–458. doi: 10.1073/pnas.70.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anraku Y. Transport of sugars and amino acids in bacteria. 3. Studies on the restoration of active transport. J Biol Chem. 1968 Jun 10;243(11):3128–3135. [PubMed] [Google Scholar]
  3. Anraku Y. Transport of sugars and amino acids in bacteria. I. Purification and specificity of the galactose- and leucine-binding proteins. J Biol Chem. 1968 Jun 10;243(11):3116–3122. [PubMed] [Google Scholar]
  4. Anraku Y. Transport of sugars and amino acids in bacteria. II. Properties of galactose- and leucine-binding proteins. J Biol Chem. 1968 Jun 10;243(11):3123–3127. [PubMed] [Google Scholar]
  5. Armstrong F B, Wagner R P. Mutants of Salmonella Deficient in Reductoisomerase. Genetics. 1962 Nov;47(11):1581–1593. doi: 10.1093/genetics/47.11.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BRITTEN R. J., McCLURE F. T. The amino acid pool in Escherichia coli. Bacteriol Rev. 1962 Sep;26:292–335. doi: 10.1128/br.26.3.292-335.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. COHEN G. N., RICKENBERG H. V. Concentration spécifique réversible des amino acides chez Escherichia coli. Ann Inst Pasteur (Paris) 1956 Nov;91(5):693–720. [PubMed] [Google Scholar]
  8. De Felice M., Guardiola J., Lamberti A., Iaccarino M. Escherichia coli K-12 mutants altered in the transport systems for oligo- and dipeptides. J Bacteriol. 1973 Nov;116(2):751–756. doi: 10.1128/jb.116.2.751-756.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elliott C. J., Armstrong F. B. Isoleucine-valine requiring mutants of Salmonella typhimurium. II. Strains deficient in dihydroxyacid dehydratase activity. Genetics. 1968 Feb;58(2):171–179. doi: 10.1093/genetics/58.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Furlong C. E., Weiner J. H. Purification of a leucine-specific binding protein from Escherichia coli. Biochem Biophys Res Commun. 1970 Mar 27;38(6):1076–1083. doi: 10.1016/0006-291x(70)90349-9. [DOI] [PubMed] [Google Scholar]
  11. Guardiola J., Iaccarino M. Escherichia coli K-12 mutants altered in the transport of branched-chain amino acids. J Bacteriol. 1971 Dec;108(3):1034–1044. doi: 10.1128/jb.108.3.1034-1044.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LEAVITT R. I., UMBARGER H. E. Isoleucine and valine metabolism in Escherichia coli. XI. Valine inhibition of the growth of Escherichia coli strain K-12. J Bacteriol. 1962 Mar;83:624–630. doi: 10.1128/jb.83.3.624-630.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Piperno J. R., Oxender D. L. Amino acid transport systems in Escherichia coli K-12. J Biol Chem. 1968 Nov 25;243(22):5914–5920. [PubMed] [Google Scholar]
  14. Rahmanian M., Claus D. R., Oxender D. L. Multiplicity of leucine transport systems in Escherichia coli K-12. J Bacteriol. 1973 Dec;116(3):1258–1266. doi: 10.1128/jb.116.3.1258-1266.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sanderson K. E. Linkage map of Salmonella typhimurium, edition IV. Bacteriol Rev. 1972 Dec;36(4):558–586. doi: 10.1128/br.36.4.558-586.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sanderson K. E., Ross H., Ziegler L., Mäkelä P. H. F + , Hfr, and F' strains of Salmonella typhimurium and Salmonella abony. Bacteriol Rev. 1972 Dec;36(4):608–637. doi: 10.1128/br.36.4.608-637.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sussman A. J., Gilvarg C. Peptide transport and metabolism in bacteria. Annu Rev Biochem. 1971;40:397–408. doi: 10.1146/annurev.bi.40.070171.002145. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES