Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 May;122(2):585–591. doi: 10.1128/jb.122.2.585-591.1975

Simple downshift and resulting lack of correlation between ppGpp pool size and ribonucleic acid accumulation.

M T Hansen, M L Pato, S Molin, N P Fill, K von Meyenburg
PMCID: PMC246095  PMID: 1092659

Abstract

The growth rate of Escherichia coli can be limited by the availability of carbon and energy. To impose such a limitation, alpha-methylglucoside (alpha MG), a non-metabolizable analogue, can be used to decrease uptake of glucose by competition for the transport of this sugar. Varying the ratio of glucose to alphaMG allowed shifts in growth rate without simultaneous qualitative changes in the growth medium and permitted examination of the immediate changes accompanying such shifts. Stringent (rel+) as well as relaxed (rel minus) strains were able to rapidly curtail their accumulation of ribonculeic acid (RNA) after a downshift imposed by decreasing glucose transport into the cell. Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) accumulated in both rel+ and rel minus strains after a degrease in growth rate. However, the accumulation of ppGpp in relaxed derivatives was very slow, and there was no direct or obligatory correlation between the level of ppGpp and the rate of RNA accumulation. This latter conclusion is supported by measurements of ppGpp levels and rates of RNA accumulation after restoration of maximal growth rates by addition of excess glucose.

Full text

PDF
585

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler J., Epstein W. Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2895–2899. doi: 10.1073/pnas.71.7.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atherly A. G. Ribonucleic acid regulation in premeabilized cells of Escherichia coli capable of ribonucleic acid and protein synthesis. J Bacteriol. 1974 Jun;118(3):1186–1189. doi: 10.1128/jb.118.3.1186-1189.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Block R., Haseltine W. A. Thermolability of the stringent factor in rel mutants of Escherichia coli. J Mol Biol. 1973 Jul 15;77(4):625–629. doi: 10.1016/0022-2836(73)90228-3. [DOI] [PubMed] [Google Scholar]
  4. Bremer H., Yuan D. Uridine transport and incorporation into nucleic acids in escherichia coli. Biochim Biophys Acta. 1968 Nov 20;169(1):21–34. doi: 10.1016/0005-2787(68)90005-1. [DOI] [PubMed] [Google Scholar]
  5. Cashel M., Gallant J. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature. 1969 Mar 1;221(5183):838–841. doi: 10.1038/221838a0. [DOI] [PubMed] [Google Scholar]
  6. Fiil N. P., von Meyenburg K., Friesen J. D. Accumulation and turnover of guanosine tetraphosphate in Escherichia coli. J Mol Biol. 1972 Nov 28;71(3):769–783. doi: 10.1016/s0022-2836(72)80037-8. [DOI] [PubMed] [Google Scholar]
  7. Forchhammer J., Lindahl L. Growth rate of polypeptide chains as a function of the cell growth rate in a mutant of Escherichia coli 15. J Mol Biol. 1971 Feb 14;55(3):563–568. doi: 10.1016/0022-2836(71)90337-8. [DOI] [PubMed] [Google Scholar]
  8. HAGIHIRA H., WILSON T. H., LIN E. C. STUDIES ON THE GLUCOSE-TRANSPORT SYSTEM IN ESCHERICHIA COLI WITH ALPHA-METHYLGLUCOSIDE AS SUBSTRATE. Biochim Biophys Acta. 1963 Nov 15;78:505–515. doi: 10.1016/0006-3002(63)90912-0. [DOI] [PubMed] [Google Scholar]
  9. Harshman R. B., Yamazaki H. Formation of ppGpp in a relaxed and stringent strain of Escherichia coli during diauxie lag. Biochemistry. 1971 Oct 12;10(21):3980–3982. doi: 10.1021/bi00797a027. [DOI] [PubMed] [Google Scholar]
  10. Haseltine W. A. In vitro transcription of Escherichia coli ribosomal RNA genes. Nature. 1972 Feb 11;235(5337):329–333. doi: 10.1038/235329a0. [DOI] [PubMed] [Google Scholar]
  11. Jacobson L. A. Regulation of ribonucleic acid synthesis in Escherichia coli during diauxie lag: accumulation of heterogeneous ribonucleic acid. J Bacteriol. 1970 Jun;102(3):740–746. doi: 10.1128/jb.102.3.740-746.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KESSLER D. P., RICKENBERG H. V. The competitive inhibition of alpha-methylglucoside uptake in Escherichia coli. Biochem Biophys Res Commun. 1963 Mar 25;10:482–487. doi: 10.1016/0006-291x(63)90383-8. [DOI] [PubMed] [Google Scholar]
  13. Khan S. R., Yamazaki H. Inapparent correlation between guanosine tetraphosphate levels and RNA contents in Escherichia coli. Biochem Biophys Res Commun. 1974 Jul 10;59(1):125–132. doi: 10.1016/s0006-291x(74)80183-x. [DOI] [PubMed] [Google Scholar]
  14. Kornberg H. L., Smith J. Genetic control of glucose uptake by Escherichia coli. FEBS Lett. 1972 Feb 15;20(3):270–272. doi: 10.1016/0014-5793(72)80084-x. [DOI] [PubMed] [Google Scholar]
  15. Lazzarini R. A., Cashel M., Gallant J. On the regulation of guanosine tetraphosphate levels in stringent and relaxed strains of Escherichia coli. J Biol Chem. 1971 Jul 25;246(14):4381–4385. [PubMed] [Google Scholar]
  16. Lazzarini R. A., Johnson L. D. Regulation of ribosomal RNA synthesis in cold-shocked E. coli. Nat New Biol. 1973 May 2;243(122):17–20. [PubMed] [Google Scholar]
  17. Murooka Y., Lazzarini R. A. In vitro synthesis of ribosomal ribonucleic acid by a deoxyribonucleic acid-protein complex isolated from Escherichia coli. J Biol Chem. 1973 Sep 10;248(17):6248–6250. [PubMed] [Google Scholar]
  18. Norris T. E., Koch A. L. Effect of growth rate on the relative rates of synthesis of messenger, ribosomal and transfer RNA in Escherichia coli. J Mol Biol. 1972 Mar 14;64(3):633–649. doi: 10.1016/0022-2836(72)90088-5. [DOI] [PubMed] [Google Scholar]
  19. Rosset R., Julien J., Monier R. Ribonucleic acid composition of bacteria as a function of growth rate. J Mol Biol. 1966 Jul;18(2):308–320. doi: 10.1016/s0022-2836(66)80248-6. [DOI] [PubMed] [Google Scholar]
  20. Sekiguchi M., Iida S. Mutants of Escherichia coli permeable to actinomycin. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2315–2320. doi: 10.1073/pnas.58.6.2315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stamminger G., Lazzarini R. A. Analysis of the RNA of defective VSV particles. Cell. 1974 Sep;3(1):85–93. doi: 10.1016/0092-8674(74)90044-0. [DOI] [PubMed] [Google Scholar]
  22. Travers A. Control of ribosomal RNA synthesis in vitro. Nature. 1973 Jul 6;244(5410):15–18. doi: 10.1038/244015a0. [DOI] [PubMed] [Google Scholar]
  23. Winkler H. H. A hexose-phosphate transport system in Escherichia coli. Biochim Biophys Acta. 1966 Mar 28;117(1):231–240. doi: 10.1016/0304-4165(66)90170-x. [DOI] [PubMed] [Google Scholar]
  24. Winslow R. M. A consequence of the rel gene during a glucose to lactate downshift in Escherichia coli. The rates of ribonucleic acid synthesis. J Biol Chem. 1971 Aug 10;246(15):4872–4877. [PubMed] [Google Scholar]
  25. Winslow R. M., Lazzarini R. A. Amino acid regulation of the rates of synthesis and chain elongation of ribonucleic acid in Escherichia coli. J Biol Chem. 1969 Jun 25;244(12):3387–3392. [PubMed] [Google Scholar]
  26. Winslow R. M., Lazzarini R. A. The rates of synthesis and chain elongation of ribonucleic acid in Escherichia coli. J Biol Chem. 1969 Mar 10;244(5):1128–1136. [PubMed] [Google Scholar]
  27. von Meyenburg Kaspar Transport-limited growth rates in a mutant of Escherichia coli. J Bacteriol. 1971 Sep;107(3):878–888. doi: 10.1128/jb.107.3.878-888.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES