Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 May;122(2):686–690. doi: 10.1128/jb.122.2.686-690.1975

Lipophilic chelator inhibition of electron transport in Escherichia coli.

R T Crane, I L Sun, F L Crane
PMCID: PMC246107  PMID: 1092663

Abstract

The lipophilic chelator bathophenanthroline inhibits electron transport in membranes from Escherichia coli. The less lipophilic 1,10-phenanthroline, bathophenanthroline sulfonate, and alpha,alpha-dipyridyl have little effect. Reduced nicotinamide adenine dinucleotide oxidase is more sensitive to bathophenanthroline inhibition than lactate oxidase activity. Evidence for two sites of inhibition comes from the fact that both reduced nicotinamide adenine dinucleotide menadione reductase and duroquinol oxidase activities are inhibited. Addition of uncouplers of phosphorylation before bathophenanthroline protects against inhibition.

Full text

PDF
687

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr R., Crane F. L. Chelator-sensitive in chloroplast electron transport. Biochem Biophys Res Commun. 1974 Sep 23;60(2):748–755. doi: 10.1016/0006-291x(74)90304-0. [DOI] [PubMed] [Google Scholar]
  2. Castelli A., Bertoli E., Littarru G. P., Lenaz G., Folkers K. Effect of hydroxy analogs of coenzyme Q on DPNH- and succin-oxidase activities of yeast mitochondria. Biochem Biophys Res Commun. 1971 Mar 5;42(5):806–812. doi: 10.1016/0006-291x(71)90501-8. [DOI] [PubMed] [Google Scholar]
  3. Cox G. B., Newton N. A., Gibson F., Snoswell A. M., Hamilton J. A. The function of ubiquinone in Escherichia coli. Biochem J. 1970 Apr;117(3):551–562. doi: 10.1042/bj1170551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hamilton J. A., Cox G. B., Looney F. D., Gibson F. Ubisemiquinone in membranes from Escherichia coli. Biochem J. 1970 Jan;116(2):319–320. doi: 10.1042/bj1160319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hare J. F., Crane F. L. A durohydroquinone oxidation site in the mitochondrial transport chain. J Bioenerg. 1971 Dec;2(5):317–326. doi: 10.1007/BF01963828. [DOI] [PubMed] [Google Scholar]
  6. Harmon H. J., Crane F. L. Topographical definition of new sites on the mitochondrial electron transport chain. Biochem Biophys Res Commun. 1974 Jul 10;59(1):326–333. doi: 10.1016/s0006-291x(74)80210-x. [DOI] [PubMed] [Google Scholar]
  7. Kurup C. K., Brodie A. F. Oxidative phosphorylation in fractionated bacterial systems. XXV. Studies on the involvement of metal in Mycobacterium phlei. J Biol Chem. 1967 Jan 25;242(2):197–203. [PubMed] [Google Scholar]
  8. Newton N. A., Cox G. B., Gibson F. Function of ubiquinone in Escherichia coli: a mutant strain forming a low level of ubiquinone. J Bacteriol. 1972 Jan;109(1):69–73. doi: 10.1128/jb.109.1.69-73.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Phelps D. C., Crane F. L. Lipophilic chelator inhibition of mitochondrial membrane-bound ATPase activity and prevention of inhibition by uncouplers. Biochem Biophys Res Commun. 1974 Nov 27;61(2):671–676. doi: 10.1016/0006-291x(74)91009-2. [DOI] [PubMed] [Google Scholar]
  10. Phelps D. C., Harmon H. J., Crane F. L. Prevention by uncouplers of lipophilic chelator inhibition at three sites of mitochondrial electron transport. Biochem Biophys Res Commun. 1974 Aug 19;59(4):1185–1191. doi: 10.1016/0006-291x(74)90439-2. [DOI] [PubMed] [Google Scholar]
  11. Walker G. A., Mortenson L. E. An effect of magnesium adenosine 5'-triphosphate on the structure of azoferredoxin from Clostridium pasteurianum. Biochem Biophys Res Commun. 1973 Aug 6;53(3):904–909. doi: 10.1016/0006-291x(73)90177-0. [DOI] [PubMed] [Google Scholar]
  12. YONETANI T. Studies on cytochrome oxidase. III. Improved preparation and some properties. J Biol Chem. 1961 Jun;236:1680–1688. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES