Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Jun;122(3):855–865. doi: 10.1128/jb.122.3.855-865.1975

Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast.

C Waldron, F Lacroute
PMCID: PMC246135  PMID: 1097403

Abstract

The steady-state growth rate of Saccharomyces cerevisiae was varied by growing the cells in different media. The total amount of ribonucleic acid (RNA) per cell was found to decrease as a nonlinear function of decreasing growh rate. The RNA from cells growing in different media was analyzed by polyacrylamide gel electrophoresis. Although the amounts of both ribosomal RNA and transfer RNA decreased with decreasing growth rate, the ratio of ribosomal to transfer RNA was not constant. As the growth rate was reduced the ribosomal RNA fraction decreased slightly, whereas the transfer RNA fraction increased slightly. Thus the levels of ribosomal and transfer RNA were regulated to similar yet different extents. The levels of the different ribosomal RNA species were more closely coordinated. At all growth rates the ribosomal RNAs (including 5S RNA) were present in equimolar amounts. The rate of protein synthesis in yeast cells also decreased with decreasing growth rate. The low rates of protein synthesis did not appear to be due to limiting numbers of ribosomes or transfer RNA molecules.

Full text

PDF
856

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dennis P. P., Bremer H. Differential rate of ribosomal protein synthesis in Escherichia coli B/r. J Mol Biol. 1974 Apr 15;84(3):407–422. doi: 10.1016/0022-2836(74)90449-5. [DOI] [PubMed] [Google Scholar]
  2. Dennis P. P., Bremer H. Macromolecular composition during steady-state growth of Escherichia coli B-r. J Bacteriol. 1974 Jul;119(1):270–281. doi: 10.1128/jb.119.1.270-281.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dennis P. P., Herman R. K. Control of deoxyribonucleic acid and ribonucleic acid synthesis in pyrimidine-limited Escherichia coli. J Bacteriol. 1970 Apr;102(1):124–129. doi: 10.1128/jb.102.1.124-129.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Di Mauro E., Hollenberg C. P., Hall B. D. Transcription in yeast: a factor that stimulates yeast RNA polymerases. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2818–2822. doi: 10.1073/pnas.69.10.2818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fauman M., Rabiwitz M., Getz G. S. Base composition and sedimentation properties of mitochondrial RNA of Saccharomyces cerebisiae. Biochim Biophys Acta. 1969 Jun 17;182(2):355–360. doi: 10.1016/0005-2787(69)90186-5. [DOI] [PubMed] [Google Scholar]
  6. Forchhammer J., Kjeldgaard N. O. Regulation of messenger RNA synthesis in Escherichia coli. J Mol Biol. 1968 Oct 28;37(2):245–255. doi: 10.1016/0022-2836(68)90265-9. [DOI] [PubMed] [Google Scholar]
  7. Forchhammer J., Lindahl L. Growth rate of polypeptide chains as a function of the cell growth rate in a mutant of Escherichia coli 15. J Mol Biol. 1971 Feb 14;55(3):563–568. doi: 10.1016/0022-2836(71)90337-8. [DOI] [PubMed] [Google Scholar]
  8. Gross K. J., Pogo A. O. Control mechanism of ribonucleic acid synthesis in eukaryotes. The effect of amino acid and glucose starvation and cycloheximide on yeast deoxyribonucleic acid-dependent ribonucleic acid polymerases. J Biol Chem. 1974 Jan 25;249(2):568–576. [PubMed] [Google Scholar]
  9. Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hindley J., Page S. M. Nucleotide sequence of yeast 5 S ribosomal RNA. FEBS Lett. 1972 Oct 1;26(1):157–160. doi: 10.1016/0014-5793(72)80563-5. [DOI] [PubMed] [Google Scholar]
  11. Koch A. L. The adaptive responses of Escherichia coli to a feast and famine existence. Adv Microb Physiol. 1971;6:147–217. doi: 10.1016/s0065-2911(08)60069-7. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Leick V. Growth rate dependency of protein and nucleic acid composition of Tetrahymena pyriformis and the control of synthesis of ribosomal and transfer RNA. C R Trav Lab Carlsberg. 1967;36(7):113–126. [PubMed] [Google Scholar]
  14. McMurrough I., Rose A. H. Effect of growth rate and substrate limitation on the composition and structure of the cell wall of Saccharomyces cerevisiae. Biochem J. 1967 Oct;105(1):189–203. doi: 10.1042/bj1050189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. OSAWA S. The nucleotide composition of ribonucleic acids from subcellular components of yeast, Escherichia coli and rat liver, with special reference to the occurrence of pseudouridylic acid in soluble ribonucleic acid. Biochim Biophys Acta. 1960 Aug 12;42:244–254. doi: 10.1016/0006-3002(60)90788-5. [DOI] [PubMed] [Google Scholar]
  16. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  17. Petersen N. S., McLaughlin C. S. Monocistronic messenger RNA in yeast. J Mol Biol. 1973 Nov 25;81(1):33–45. doi: 10.1016/0022-2836(73)90245-3. [DOI] [PubMed] [Google Scholar]
  18. Poyton R. O. Effect of growth rate on the macromolecular composition of Prototheca zopfii, a colorless alga which divides by multiple fission. J Bacteriol. 1973 Jan;113(1):203–211. doi: 10.1128/jb.113.1.203-211.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Quincey R. V., Wilson S. H. The utilization of genes for ribosomal RNA, 5S RNA, and transfer RNA in liver cells of adult rats. Proc Natl Acad Sci U S A. 1969 Nov;64(3):981–988. doi: 10.1073/pnas.64.3.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rubin G. M., Sulston J. E. Physical linkage of the 5 S cistrons to the 18 S and 28 S ribosomal RNA cistrons in Saccharomyces cerevisiae. J Mol Biol. 1973 Sep 25;79(3):521–530. doi: 10.1016/0022-2836(73)90403-8. [DOI] [PubMed] [Google Scholar]
  21. Rubin G. M. The nucleotide sequence of Saccharomyces cerevisiae 5.8 S ribosomal ribonucleic acid. J Biol Chem. 1973 Jun 10;248(11):3860–3875. [PubMed] [Google Scholar]
  22. Sebastian J., Mian F., Halvorson H. O. Effect of the growth rate on the level of the DNA-dependent RNA polymerases in Saccharomyces cerevisiae. FEBS Lett. 1973 Aug 15;34(2):159–162. doi: 10.1016/0014-5793(73)80782-3. [DOI] [PubMed] [Google Scholar]
  23. Skjold A. C., Juarez H., Hedgcoth C. Relationships among deoxyribonucleic acid, ribonucleic acid, and specific transfer ribonucleic acids in Escherichia coli 15T - at various growth rates. J Bacteriol. 1973 Jul;115(1):177–187. doi: 10.1128/jb.115.1.177-187.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Udem S. A., Kaufman K., Warner J. R. Small ribosomal ribonucleic acid species of Saccharomyces cerevisiae. J Bacteriol. 1971 Jan;105(1):101–106. doi: 10.1128/jb.105.1.101-106.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Udem S. A., Warner J. R. Ribosomal RNA synthesis in Saccharomyces cerevisiae. J Mol Biol. 1972 Mar 28;65(2):227–242. doi: 10.1016/0022-2836(72)90279-3. [DOI] [PubMed] [Google Scholar]
  26. Waldron C., Jund R., Lacroute F. The elongation rate of proteins of different molecular weight classes in yeast. FEBS Lett. 1974 Sep 15;46(1):11–16. doi: 10.1016/0014-5793(74)80323-6. [DOI] [PubMed] [Google Scholar]
  27. Wehr C. T., Parks L. W. Macromolecular synthesis in Saccharomyces cerevisiae in different growth media. J Bacteriol. 1969 May;98(2):458–466. doi: 10.1128/jb.98.2.458-466.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weil J. H. Distribution subcellulaire des divers tRNA de levure et d'E. coli. Bull Soc Chim Biol (Paris) 1969;51(10):1479–1496. [PubMed] [Google Scholar]
  29. Weinmann R., Roeder R. G. Role of DNA-dependent RNA polymerase 3 in the transcription of the tRNA and 5S RNA genes. Proc Natl Acad Sci U S A. 1974 May;71(5):1790–1794. doi: 10.1073/pnas.71.5.1790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. von Meyenburg Kaspar Transport-limited growth rates in a mutant of Escherichia coli. J Bacteriol. 1971 Sep;107(3):878–888. doi: 10.1128/jb.107.3.878-888.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES