Abstract
l-Tyrosine and l-phenylalanine enter cells of Bacillus subtilis via a system of active transport that exhibits complex kinetic behavior. The specificity of the transport system was characterized both at low concentrations of transport substrate (where affinity for l-tyrosine or l-phenylalanine is high but capacity is low) and at high concentrations (where affinity is low but capacity is high). Specificity was not found to differ significantly as a function of either l-tyrosine or l-phenylalanine concentration. Kinetic analysis showed that the relationship between the uptake of l-phenylalanine and l-tyrosine is strictly competitive. Neither l-tyrosine nor l-phenylalanine uptake was competitively inhibited by other naturally occurring l-amino acids, indicating the importance of the phenyl side chain to uptake specificity. Hence, it is concluded that l-tyrosine and l-phenylalanine are transported by a common system that is specific for these two amino acids. The abilities of analogue derivatives of l-tyrosine and l-phenylalanine to inhibit the uptake of l-[14C]tyrosine and l-[14C]phenylalanine competitively were determined throughout a wide range of substrate and inhibitor concentrations. In this manner, the contributions of the side chain, the α-amino group and the carboxyl group to uptake specificity were established. It is concluded that the positively charged α-amino group contributes more significantly to uptake specificity than does the negatively charged carboxyl group. The recognition of a phenyl ring is an essential feature of specificity; other amino acids with aromatic side chains, such as the indole and imidazole rings of l-tryptophan and l-histidine, do not compete with l-tyrosine and l-phenylalanine for uptake. The presence of the p-hydroxy substitutent in the side chain (as in l-tyrosine) enhances the uptake of the aryl amino acid analogues investigated.
Full text
PDF![673](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad7c/246299/de26d50b46a4/jbacter00348-0213.png)
![674](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad7c/246299/f771472d7fa2/jbacter00348-0214.png)
![675](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad7c/246299/5f6b03281384/jbacter00348-0215.png)
![676](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad7c/246299/1bb0a9a668cb/jbacter00348-0216.png)
![677](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad7c/246299/b74b23e92cf0/jbacter00348-0217.png)
![678](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad7c/246299/31e26cdb51eb/jbacter00348-0218.png)
![679](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad7c/246299/929cafcae1dd/jbacter00348-0219.png)
![680](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad7c/246299/8bb39e83b2d3/jbacter00348-0220.png)
![681](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad7c/246299/4b288f84a78e/jbacter00348-0221.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames G. F., Roth J. R. Histidine and aromatic permeases of Salmonella typhimurim. J Bacteriol. 1968 Nov;96(5):1742–1749. doi: 10.1128/jb.96.5.1742-1749.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker J. M., Wilchek M., Katchalski E. Irreversible inhibition of biotin transport in yeast by biotinyl-p-nitrophenyl ester. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2604–2607. doi: 10.1073/pnas.68.10.2604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berlin R. D., Stadtman E. R. A possible role of purine nucleotide pyrophosphorylases in the regulation of purine uptake by Bacillus subtilis. J Biol Chem. 1966 Jun 10;241(11):2679–2686. [PubMed] [Google Scholar]
- Bernlohr R. W. Changes in amino acid permeation during sporulation. J Bacteriol. 1967 Mar;93(3):1031–1044. doi: 10.1128/jb.93.3.1031-1044.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birch P. L., el-Obeid H. A., Akhtar M. The preparation of chloromethylketone analogues of amino acids: inhibition of leucine aminopeptidase. Arch Biochem Biophys. 1972 Feb;148(2):447–451. doi: 10.1016/0003-9861(72)90163-4. [DOI] [PubMed] [Google Scholar]
- Champney W. S., Jensen R. A. D-Tyrosine as a metabolic inhibitor of Bacillus subtilis. J Bacteriol. 1969 Apr;98(1):205–214. doi: 10.1128/jb.98.1.205-214.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox C. F., Carter J. R., Kennedy E. P. GENETIC CONTROL OF THE MEMBRANE PROTEIN COMPONENT OF THE LACTOSE TRANSPORT SYSTEM OF Escherichia coli. Proc Natl Acad Sci U S A. 1967 Mar;57(3):698–705. doi: 10.1073/pnas.57.3.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grenson M., Hou C., Crabeel M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol. 1970 Sep;103(3):770–777. doi: 10.1128/jb.103.3.770-777.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen R. A. A biochemical basis for apparent abortive transformation in Bacillus subtilis. Genetics. 1968 Dec;60(4):707–717. doi: 10.1093/genetics/60.4.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen R. A., Stenmark S. L., Champney W. S. Molecular basis for the differential anti-metabolite action of D-tyrosine in strains 23 and 168 of Bacillus subtilis. Arch Mikrobiol. 1972;87(2):173–180. doi: 10.1007/BF00424998. [DOI] [PubMed] [Google Scholar]
- Kaback H. R. Transport. Annu Rev Biochem. 1970;39:561–598. doi: 10.1146/annurev.bi.39.070170.003021. [DOI] [PubMed] [Google Scholar]
- Kay W. W. Two aspartate transport systems in Escherichia coli. J Biol Chem. 1971 Dec 10;246(23):7373–7382. [PubMed] [Google Scholar]
- Konings W. N., Freese E. Amino acid transport in membrane vesicles of Bacillus subtilis. J Biol Chem. 1972 Apr 25;247(8):2408–2418. [PubMed] [Google Scholar]
- Levitzki A., Koshland D. E., Jr Negative cooperativity in regulatory enzymes. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1121–1128. doi: 10.1073/pnas.62.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin E. C. The genetics of bacterial transport systems. Annu Rev Genet. 1970;4:225–262. doi: 10.1146/annurev.ge.04.120170.001301. [DOI] [PubMed] [Google Scholar]
- Magill C. W., Sweeney H., Woodward V. W. Histidine uptake in strains of Neurospora crassa with normal and mutant transport systems. J Bacteriol. 1972 Apr;110(1):313–320. doi: 10.1128/jb.110.1.313-320.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piperno J. R., Oxender D. L. Amino acid transport systems in Escherichia coli K-12. J Biol Chem. 1968 Nov 25;243(22):5914–5920. [PubMed] [Google Scholar]
- Shaw E., Ruscica J. The reactivity of His-57 in chymotrypsin to alkylation. Arch Biochem Biophys. 1971 Aug;145(2):484–489. doi: 10.1016/s0003-9861(71)80008-5. [DOI] [PubMed] [Google Scholar]
- Shaw E. Selective chemical modification of proteins. Physiol Rev. 1970 Apr;50(2):244–296. doi: 10.1152/physrev.1970.50.2.244. [DOI] [PubMed] [Google Scholar]
- Willecke K., Pardee A. B. Inducible transport of citrate in a Gram-positive bacterium, Bacillus subtilis. J Biol Chem. 1971 Feb 25;246(4):1032–1040. [PubMed] [Google Scholar]