Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Sep;115(3):975–981. doi: 10.1128/jb.115.3.975-981.1973

Amino Acid Transport in a Polyaromatic Amino Acid Auxotroph of Saccharomyces cerevisiae

Randolph L Greasham a,1, Albert G Moat a
PMCID: PMC246344  PMID: 4580574

Abstract

The initiation of growth of a polyaromatic auxotrophic mutant of Saccharomyces cerevisiae was inhibited by several amino acids, whereas growth of the parent prototroph was unaffected. A comparative investigation of amino acid transport in the two strains employing 14C-labeled amino acids revealed that the transport of amino acids in S. cerevisiae was mediated by a general transport system responsible for the uptake of all neutral as well as basic amino acids. Both auxotrophic and prototrophic strains exhibited stereospecificity for l-amino acids and a Km ranging from 1.5 × 10−5 to 5.0 × 10−5 M. Optimal transport activity occurred at pH 5.7. Cycloheximide had no effect on amino acid uptake, indicating that protein synthesis was not a direct requirement for amino acid transport. Regulation of amino acid transport was subject to the concentration of amino acids in the free amino acid pool. Amino acid inhibition of the uptake of the aromatic amino acids by the aromatic auxotroph did not correlate directly with the effect of amino acids on the initiation of growth of the auxotroph but provides a partial explanation of this effect.

Full text

PDF
978

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crabeel M., Grenson M. Regulation of histidine uptake by specific feedback inhibition of two histidine permeases in Saccharomyces cerevisiae. Eur J Biochem. 1970 May 1;14(1):197–204. doi: 10.1111/j.1432-1033.1970.tb00278.x. [DOI] [PubMed] [Google Scholar]
  2. Grenson M., Crabeel M., Wiame J. M., Béchet J. Inhibition of protein synthesis and simulation of permease turnover in yeast. Biochem Biophys Res Commun. 1968 Feb 26;30(4):414–419. doi: 10.1016/0006-291x(68)90760-2. [DOI] [PubMed] [Google Scholar]
  3. Grenson M., Hou C., Crabeel M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol. 1970 Sep;103(3):770–777. doi: 10.1128/jb.103.3.770-777.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grenson M., Mousset M., Wiame J. M., Bechet J. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochim Biophys Acta. 1966 Oct 31;127(2):325–338. doi: 10.1016/0304-4165(66)90387-4. [DOI] [PubMed] [Google Scholar]
  5. Grenson M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. II. Evidence for a specific lysine-transporting system. Biochim Biophys Acta. 1966 Oct 31;127(2):339–346. doi: 10.1016/0304-4165(66)90388-6. [DOI] [PubMed] [Google Scholar]
  6. Gupta R. K., Pramer D. Amino acid transport by the filamentous fungus Arthrobotrys conoides. J Bacteriol. 1970 Jul;103(1):120–130. doi: 10.1128/jb.103.1.120-130.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HALVORSON H. O., COHEN G. N. Incorporation des amino-acides endogènes et exogènes dans les protéines de la levure. Ann Inst Pasteur (Paris) 1958 Jul;95(1):73–87. [PubMed] [Google Scholar]
  8. Hunter D. R., Segel I. H. Acidic and basic amino acid transport systems of Penicillium chrysogenum. Arch Biochem Biophys. 1971 May;144(1):168–183. doi: 10.1016/0003-9861(71)90466-8. [DOI] [PubMed] [Google Scholar]
  9. KERRIDGE D. The effect of actidione and other antifungal agents on nucleic acid and protein synthesis in Saccharomyces carlsbergensis. J Gen Microbiol. 1958 Dec;19(3):497–506. doi: 10.1099/00221287-19-3-497. [DOI] [PubMed] [Google Scholar]
  10. MOAT A. G., PETERS N., Jr, SRB A. M. Selection and isolation of auxotrophic yeast mutants with the aid of antibiotics. J Bacteriol. 1959 Jun;77(6):673–677. doi: 10.1128/jb.77.6.673-677.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moat A. G., Ahmad F., Alexander J. K., Barnes I. J. Alteration in the amino acid content of yeast during growth under various nutritional conditions. J Bacteriol. 1969 May;98(2):573–578. doi: 10.1128/jb.98.2.573-578.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moat A. G., Barnes I. J., McCurley E. H. Factors Affecting the Survival of Auxotrophs and Prototrophs of Saccharomyces cerevisiae in Mixed Populations. J Bacteriol. 1966 Aug;92(2):297–301. doi: 10.1128/jb.92.2.297-301.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ring K., Gross W., Heinz E. Negative feedback regulation of amino acid transport in Streptomyces hydrogenans. Arch Biochem Biophys. 1970 Mar;137(1):243–252. doi: 10.1016/0003-9861(70)90431-5. [DOI] [PubMed] [Google Scholar]
  14. Schwencke J., Magaña-Schwencke N. Derepression of a proline transport system in Saccharomyces chevalieri by nitrogen starvation. Biochim Biophys Acta. 1969 Mar 11;173(2):302–312. doi: 10.1016/0005-2736(69)90113-8. [DOI] [PubMed] [Google Scholar]
  15. Surdin Y., Sly W., Sire J., Bordes A. M., Robichon-Szulmajster H. Propriétés et contrôle génétique du système d'accumulation des acides aminés chez Saccharomyces cerevisiae. Biochim Biophys Acta. 1965 Oct 18;107(3):546–566. [PubMed] [Google Scholar]
  16. Wiley W. R., Matchett W. H. Tryptophan transport in Neurospora crassa. I. Specificity and kinetics. J Bacteriol. 1966 Dec;92(6):1698–1705. doi: 10.1128/jb.92.6.1698-1705.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES