Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Sep;107(3):593–598. doi: 10.1128/jb.107.3.593-598.1971

Deoxyribonucleic Acid-Dependent Ribonucleic Acid Polymerase Activity in Purified Trachoma Elementary Bodies: Effect of Sodium Chloride on Ribonucleic Acid Transcription

Israel Sarov 1, Yechiel Becker 1
PMCID: PMC246976  PMID: 5095283

Abstract

Highly purified trachoma elementary bodies (T′ang strain), incubated in the presence of the four nucleoside triphosphates [Mg2+, Mn2+, 2-mercaptoethanol, tris(hydroxymethyl)aminomethane buffer (pH 7.5)] were found to incorporate 3H-uridine triphosphate (UTP) into ribonucleic acid (RNA) molecules. Eighty-seven per cent of the labeled molecules were sensitive to ribonuclease treatment. In vitro RNA synthesis was almost completely inhibited by actinomycin D. Rifampin was also inhibitory, but allowed some initial RNA synthesis before complete inhibition occurred. When the reaction mixture lacked Mn2+, trachoma elementary bodies synthesized, for a limited period, high-molecular-weight RNA species (23 to 24S, 16 to 17S, and 10 to 11S). Addition of 0.2 m NaCl to the same reaction mixture stimulated and prolonged 3H-UTP incorporation into the same radioactive RNA species. Addition of 0.001 m Mn2+ instead of NaCl also stimulated 3H-UTP incorporation but prevented the synthesis of the high-molecular-weight RNA species.

Full text

PDF
598

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adesnik M., Levinthal C. Synthesis and maturation of ribosomal RNA in Escherichia coli. J Mol Biol. 1969 Dec 14;46(2):281–303. doi: 10.1016/0022-2836(69)90422-7. [DOI] [PubMed] [Google Scholar]
  2. BERNKOPF H., MASHIAH P., BECKER Y. Correlation between morphological and biochemical changes and the appearance of infectivity in FL cell cultures infected with trachoma agent. Ann N Y Acad Sci. 1962 Mar 5;98:62–81. doi: 10.1111/j.1749-6632.1962.tb30532.x. [DOI] [PubMed] [Google Scholar]
  3. Becker Y., Asher Y., Himmel N., Zakay-Rones Z. Anti-trachoma activity of rifampicin and rifamycin SV derivatives. Nature. 1970 Jan 31;225(5231):454–455. doi: 10.1038/225454a0. [DOI] [PubMed] [Google Scholar]
  4. Becker Y., Asher Y., Himmel N., Zakay-Rones Z., Maythar B. Rifapicin inhibition of trachoma agent in vivo. Nature. 1969 Oct 4;224(5214):33–34. doi: 10.1038/224033a0. [DOI] [PubMed] [Google Scholar]
  5. Becker Y., Hochberg E., Zakay-Rones Z. Interaction of trachoma elementary bodies with host cells. Isr J Med Sci. 1969 Jan-Feb;5(1):121–124. [PubMed] [Google Scholar]
  6. Becker Y., Zakay-Rones Z. Rifampicin--a new antitrachoma drug. Nature. 1969 May 31;222(5196):851–853. doi: 10.1038/222851a0. [DOI] [PubMed] [Google Scholar]
  7. Bernkoff H. A plaque test for TRIC agents. Am J Ophthalmol. 1967 May;63(5 Suppl):1206–1211. [PubMed] [Google Scholar]
  8. Bleyman M., Woese C. Ribosomal ribonucleic acid maturation during bacterial spore germination. J Bacteriol. 1969 Jan;97(1):27–31. doi: 10.1128/jb.97.1.27-31.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fedorcsák I., Natarajan A. T., Ehrenberg L. On the extraction of ribonucleic acid with template activity from barley embryos using diethyl pyrocarbonate as nuclease inhibitor. Eur J Biochem. 1969 Oct;10(3):450–458. doi: 10.1111/j.1432-1033.1969.tb00710.x. [DOI] [PubMed] [Google Scholar]
  10. Fuchse, Millette R. L., Zillig W., Walter G. Influence of salts on RNA synthesis by DNA-dependent RNA-polymerase from Escherichia coli. Eur J Biochem. 1967 Dec;3(2):183–193. doi: 10.1111/j.1432-1033.1967.tb19514.x. [DOI] [PubMed] [Google Scholar]
  11. Hartmann G., Honikel K. O., Knüsel F., Nüesch J. The specific inhibition of the DNA-directed RNA synthesis by rifamycin. Biochim Biophys Acta. 1967;145(3):843–844. doi: 10.1016/0005-2787(67)90147-5. [DOI] [PubMed] [Google Scholar]
  12. Maitra U., Barash F. DNA-dependent synthesis of RNA by Escherichia coli RNA polymerase: release and reinitiation of RNA chains from DNA templates. Proc Natl Acad Sci U S A. 1969 Oct;64(2):779–786. doi: 10.1073/pnas.64.2.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mitsui Y., Kitamuro T., Fujimoto M. Adaptation of TRIC agents to tissue culture and characteristics of tissue culture adapted variants. Am J Ophthalmol. 1967 May;63(5 Suppl):1191–1205. doi: 10.1016/0002-9394(67)94101-3. [DOI] [PubMed] [Google Scholar]
  14. Moulder J. W. The relation of the psittacosis group (Chlamydiae) to bacteria and viruses. Annu Rev Microbiol. 1966;20:107–130. doi: 10.1146/annurev.mi.20.100166.000543. [DOI] [PubMed] [Google Scholar]
  15. OSSOWSKI L., BECKER Y., BERNKOPF H. AMINO ACID REQUIREMENTS OF TRACHOMA STRAINS AND OTHER AGENTS OF THE PLT GROUP IN CELL CULTURE. Isr J Med Sci. 1965 Mar;1:186–193. [PubMed] [Google Scholar]
  16. Richardson J. P. Reinitiation of RNA chain synthesis in vitro. Nature. 1970 Mar 21;225(5238):1109–1112. doi: 10.1038/2251109a0. [DOI] [PubMed] [Google Scholar]
  17. Sarov I., Becker Y. RNA in the elementary bodies of trachoma agent. Nature. 1968 Mar 2;217(5131):849–852. doi: 10.1038/217849b0. [DOI] [PubMed] [Google Scholar]
  18. Sarov I., Becker Y. Trachoma agent DNA. J Mol Biol. 1969 Jun 28;42(3):581–589. doi: 10.1016/0022-2836(69)90245-9. [DOI] [PubMed] [Google Scholar]
  19. Sippel A., Hartmann G. Mode of action of rafamycin on the RNA polymerase reaction. Biochim Biophys Acta. 1968 Mar 18;157(1):218–219. doi: 10.1016/0005-2787(68)90286-4. [DOI] [PubMed] [Google Scholar]
  20. So A. G., Davie E. W., Epstein R., Tissières A. Effects of cations on DNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1739–1746. doi: 10.1073/pnas.58.4.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sypherd P. S., Fansler B. S. Structural transitions in ribonucleic acid during ribosome development. J Bacteriol. 1967 Mar;93(3):920–929. doi: 10.1128/jb.93.3.920-929.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wehrli W., Knüsel F., Schmid K., Staehelin M. Interaction of rifamycin with bacterial RNA polymerase. Proc Natl Acad Sci U S A. 1968 Oct;61(2):667–673. doi: 10.1073/pnas.61.2.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wehrli W., Nüesch J., Knüsel F., Staehelin M. Action of rifamycins on RNA polymerase. Biochim Biophys Acta. 1968 Mar 18;157(1):215–217. doi: 10.1016/0005-2787(68)90285-2. [DOI] [PubMed] [Google Scholar]
  24. Weiss E. Adenosine Triphosphate and Other Requirements for the Utilization of Glucose by Agents of the Psittacosis-Trachoma Group. J Bacteriol. 1965 Jul;90(1):243–253. doi: 10.1128/jb.90.1.243-253.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weiss E. Comparative metabolism of Chlamydia with special reference to catabolic activities. Am J Ophthalmol. 1967 May;63(5 Suppl):1098+–1098+. doi: 10.1016/0002-9394(67)94088-3. [DOI] [PubMed] [Google Scholar]
  26. di Mauro E., Synder L., Marino P., Lamberti A., Coppo A., Tocchini-Valentini G. P. Rifampicin sensitivity of the components of DNA-dependent RNA polymerase. Nature. 1969 May 10;222(5193):533–537. doi: 10.1038/222533a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES