Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 Dec;108(3):1112–1121. doi: 10.1128/jb.108.3.1112-1121.1971

Purification and Properties of Adenylyl Sulfate Reductase from the Phototrophic Sulfur Bacterium, Thiocapsa roseopersicina

Hans G Truper 1, Lynne A Rogers 1
PMCID: PMC247194  PMID: 5139533

Abstract

Adenylyl sulfate reductase was purified from Thiocapsa roseopersicina 60- to 80- fold, and the properties were studied. The molecular weight is 180,000. The enzyme contains, per molecule; one flavine group, two heme groups of cytochrome c character, four atoms of nonheme iron, and six labile sulfide groups. Cytochrome c and ferricyanide serve as electron acceptors. With ferricyanide as the electron acceptor, the pH optimum of the enzyme is at 8.0; with cytochrome c, the pH optimum is at 9.0. Of the nucleotides studied, adenosine 5′-monophosphate is most effective. The influence of substrate concentrations on the activity of the enzyme was studied, and the Km values for sulfite, adenosine 5′-monophosphate, ferricyanide, and cytochrome c were determined. The properties of the enzyme are compared with those of adenylyl sulfate reductases purified from sulfate-reducing bacteria and thiobacilli.

Full text

PDF
1116

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowen T. J., Happold F. C., Taylor B. F. Studies on adenosine-5'-phosphosulphate reductase from Thiobacillus denitrificans. Biochim Biophys Acta. 1966 Jun 15;118(3):566–576. doi: 10.1016/s0926-6593(66)80098-x. [DOI] [PubMed] [Google Scholar]
  2. Broda E. The evolution of bioenergetic processes. Prog Biophys Mol Biol. 1970;21:143–208. [PubMed] [Google Scholar]
  3. Campbell L. L., Kasprzycki M. A., Postgate J. R. Desulfovibrio Africans sp. n., a new dissimilatory sulfate-reducing bacterium. J Bacteriol. 1966 Oct;92(4):1122–1127. doi: 10.1128/jb.92.4.1122-1127.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cusanovich M. A., Bartsch R. G., Kamen M. D. Light-induced electron transport in Chromatium strain D. II. Light-induced absorbance changes in Chromatium chromatophores. Biochim Biophys Acta. 1968 Feb 12;153(2):397–417. doi: 10.1016/0005-2728(68)90083-2. [DOI] [PubMed] [Google Scholar]
  5. Hurlbert R. E. Effect of thiol-binding reagents on the metabolism of Chromatium D. J Bacteriol. 1968 May;95(5):1706–1712. doi: 10.1128/jb.95.5.1706-1712.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lyric R. M., Suzuki I. Enzymes involved in the metabolism of thiosulfate by Thiobacillus thioparus. 3. Properties of thiosulfate-oxidizing enzyme and proposed pathway of thiosulfate oxidation. Can J Biochem. 1970 Mar;48(3):355–363. doi: 10.1139/o70-058. [DOI] [PubMed] [Google Scholar]
  7. Lyric R. M., Suzuki I. Enzymes involved in the metabolism of thiosulfate by Thiobacillus thioparus. I. Survey of enzymes and properties of sulfite: cytochrome c oxidoreductase. Can J Biochem. 1970 Mar;48(3):334–343. doi: 10.1139/o70-056. [DOI] [PubMed] [Google Scholar]
  8. Lyric R. M., Suzuki I. Enzymes involved in the metabolism of thiosulfate by Thiobacillus thioparus. II. Properties of adenosine-5'-phosphosulfate reductase. Can J Biochem. 1970 Mar;48(3):344–354. doi: 10.1139/o70-057. [DOI] [PubMed] [Google Scholar]
  9. Morita S., Edwards M., Gibson J. Influence of metabolic conditions on light-induced absorbancy changes in Chromatium D. Biochim Biophys Acta. 1965 Sep 27;109(1):45–58. doi: 10.1016/0926-6585(65)90089-0. [DOI] [PubMed] [Google Scholar]
  10. OLSON J. M., CHANCE B. Oxidation-reduction reactions in the photosynthetic bacterium Chromatium. I. Absorption spectrum changes in whole cells. Arch Biochem Biophys. 1960 May;88:26–39. doi: 10.1016/0003-9861(60)90193-4. [DOI] [PubMed] [Google Scholar]
  11. PECK H. D., Jr, DEACON T. E., DAVIDSON J. T. STUDIES ON ADENOSINE 5'-PHOSPHOSULFATE REDUCTASE FROM DESULFOVIBRIO DESULFURICANS AND THIOBACILLUS THIOPARUS. I. THE ASSAY AND PURIFICATION. Biochim Biophys Acta. 1965 Mar 22;96:429–446. doi: 10.1016/0005-2787(65)90561-7. [DOI] [PubMed] [Google Scholar]
  12. PECK H. D., Jr Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J Bacteriol. 1961 Dec;82:933–939. doi: 10.1128/jb.82.6.933-939.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Peck H. D., Jr Energy-coupling mechanisms in chemolithotrophic bacteria. Annu Rev Microbiol. 1968;22:489–518. doi: 10.1146/annurev.mi.22.100168.002421. [DOI] [PubMed] [Google Scholar]
  14. TRUEPER H. G., SCHLEGEL H. G. SULPHUR METABOLISM IN THIORHODACEAE. I. QUANTITATIVE MEASUREMENTS ON GROWING CELLS OF CHROMATIUM OKENII. Antonie Van Leeuwenhoek. 1964;30:225–238. doi: 10.1007/BF02046728. [DOI] [PubMed] [Google Scholar]
  15. Trüper H. G., Peck H. D., Jr Formation of adenylyl sulfate in phototrophic bacteria. Arch Mikrobiol. 1970;73(2):125–142. doi: 10.1007/BF00410316. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES