Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Jan;109(1):298–306. doi: 10.1128/jb.109.1.298-306.1972

Competence Mutants III. Responses to Radiations

Edith Horn Postel 1, Sol H Goodgal 1
PMCID: PMC247280  PMID: 4550668

Abstract

Class 3 com mutants [normal in deoxyribonucleic acid (DNA) uptake but poor in ability to transform] were investigated with regard to ultraviolet (UV) and X-ray sensitivity of colony-forming ability and with regard to their ability to be transformed by UV- and X-ray-irradiated DNA. Three mutants, com40, 60, and 78, were highly UV-sensitive in colony-forming ability. None of the mutants was more sensitive than wild type to UV-irradiated transforming DNA; in fact, six of the mutants showed considerably greater resistance. Two of the mutants (com40 and 60) were slightly more sensitive to X ray in colony formation, whereas most of the mutants showed some degree of sensitivity to X-ray-irradiated transforming DNA. In addition, the physical fate of X-ray-irradiated transforming DNA has been examined, and in one case (com48) there was a significant drop in sedimentation value of X-ray-irradiated donor DNA after uptake by recipient cells. The com mutants analyzed have been classified on the basis of their UV and X-ray sensitivities, and, where appropriate, possible biochemical lesions have been implicated.

Full text

PDF
306

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beattie K. L., Setlow J. K. Killing of Haemophilus influenzae cells by integrated ultraviolet-induced lesions from transforming deoxyribonucleic acid. J Bacteriol. 1969 Dec;100(3):1284–1288. doi: 10.1128/jb.100.3.1284-1288.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bresler S. E., Kalinin V. L., Perumov D. A. Inactivation and mutagenesis on isolated DNA. V. The importance of repairing enzymes for the inactivation of transforming DNA in vitro. Mutat Res. 1970 Jan;9(1):1–19. doi: 10.1016/0027-5107(70)90066-7. [DOI] [PubMed] [Google Scholar]
  3. CLARK A. J., MARGULIES A. D. ISOLATION AND CHARACTERIZATION OF RECOMBINATION-DEFICIENT MUTANTS OF ESCHERICHIA COLI K12. Proc Natl Acad Sci U S A. 1965 Feb;53:451–459. doi: 10.1073/pnas.53.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caster J. H., Postel E. H., Goodgal S. H. Competence mutants: isolation of transformation deficient strains of Haemophilus influenzae. Nature. 1970 Aug 1;227(5257):515–517. doi: 10.1038/227515a0. [DOI] [PubMed] [Google Scholar]
  5. Cole R. S. Properties of F' factor deoxyribonucleic acid transferred from ultraviolet-irradiated donors: photoreactivation in the recipient and the influence of recA, recB, recC, and uvr genes. J Bacteriol. 1971 Apr;106(1):143–149. doi: 10.1128/jb.106.1.143-149.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curtiss R., 3rd Ultraviolet-induced genetic recombination in a partially diploid strain of Escherichia coli. Genetics. 1968 Jan;58(1):9–54. doi: 10.1093/genetics/58.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Donch J., Greenberg J. Loci of radiation sensitivity in Bs strains of Escherichia coli. Genet Res. 1968 Apr;11(2):183–191. doi: 10.1017/s0016672300011356. [DOI] [PubMed] [Google Scholar]
  8. Harm H. Dependence of the U.V. survival of transforming DNA on the amount of DNA uptake per cell. Mol Gen Genet. 1970;107(1):71–84. doi: 10.1007/BF00433225. [DOI] [PubMed] [Google Scholar]
  9. Hotchkiss R. D., Gabor M. Bacterial transformation, with special reference to recombination process. Annu Rev Genet. 1970;4:193–224. doi: 10.1146/annurev.ge.04.120170.001205. [DOI] [PubMed] [Google Scholar]
  10. Howard-Flanders P., Boyce R. P. DNA repair and genetic recombination: studies on mutants of Escherichia coli defective in these processes. Radiat Res. 1966;(Suppl):156+–156+. [PubMed] [Google Scholar]
  11. Howard-Flanders P. DNA repair. Annu Rev Biochem. 1968;37:175–200. doi: 10.1146/annurev.bi.37.070168.001135. [DOI] [PubMed] [Google Scholar]
  12. Kapp D. S., Smith K. C. Repair of radiation-induced damage in Escherichia coli. II. Effect of rec and uvr mutations on radiosensitivity, and repair of x-ray-induced single-strand breaks in deoxyribonucleic acid. J Bacteriol. 1970 Jul;103(1):49–54. doi: 10.1128/jb.103.1.49-54.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Munakata N., Ikeda Y. Inactivation of transforming DNA by ultraviolet irradiation: a study with ultraviot-sensitive mutants of Bacillus subtilis. Mutat Res. 1969 Mar-Apr;7(2):133–139. doi: 10.1016/0027-5107(69)90025-6. [DOI] [PubMed] [Google Scholar]
  14. Postel E. H., Goodgal S. H. Competence mutants. II. Physical and biological fate of donor transforming deoxyribonucleic acid. J Bacteriol. 1972 Jan;109(1):292–297. doi: 10.1128/jb.109.1.292-297.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Randolph M. L., Setlow J. K. Mechanism of inactivation of transforming deoxyribonucleic acid by X rays. J Bacteriol. 1971 Apr;106(1):221–226. doi: 10.1128/jb.106.1.221-226.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rosenthal P. N., Fox M. S. Effects of disintegration of incorporated 3H and 32P on the physical and biological properties of DNA. J Mol Biol. 1970 Dec 28;54(3):441–463. doi: 10.1016/0022-2836(70)90120-8. [DOI] [PubMed] [Google Scholar]
  17. Setlow J. K., Brown D. C., Boling M. E., Mattingly A., Gordon M. P. Repair of deoxyribonucleic acid in Haemophilus influenzae. I. X-ray sensitivity of ultraviolet-sensitive mutants and their behavior as hosts to ultraviolet-irradiated bacteriophage and transforming deoxyribonucleic acid. J Bacteriol. 1968 Feb;95(2):546–558. doi: 10.1128/jb.95.2.546-558.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Setlow J. K., Randolph M. L., Boling M. E., Mattingly A., Price G., Gordon M. P. Repair of DNA in Haemophilus influenzae. II. Excision, repair of single-strand breaks, defects in transformation, and host cell modification in UV-sensitive mutants. Cold Spring Harb Symp Quant Biol. 1968;33:209–218. doi: 10.1101/sqb.1968.033.01.024. [DOI] [PubMed] [Google Scholar]
  19. Town C. D., Smith K. C., Kaplan H. S. DNA polymerase required for rapid repair of x-ray--induced DNA strand breaks in vivo. Science. 1971 May 21;172(3985):851–854. doi: 10.1126/science.172.3985.851. [DOI] [PubMed] [Google Scholar]
  20. Walker J. R. Escherichia coli ras locus: its involvement in radiation repair. J Bacteriol. 1969 Sep;99(3):713–719. doi: 10.1128/jb.99.3.713-719.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES