Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Mar;109(3):1284–1294. doi: 10.1128/jb.109.3.1284-1294.1972

“Compartmentalization” of Escherichia coli Ribosomes and Ribonucleic Acid

Frederick Varricchio 1
PMCID: PMC247353  PMID: 4551751

Abstract

Escherichia coli spheroplasts lysed by Brij 58 and deoxycholate were separated into supernatant (S) and membrane fractions by low-speed centrifugation. The membrane fraction was further divided into that which was releasable by deoxyribonuclease (fraction D) and that which was not (M). In the presence of 10−2m Mg2+, the S, D, and M fractions contained, respectively, 60, 20, and 20% of the total cellular ribonucleic acid (RNA). Ribosomal and transfer RNA (rRNA, tRNA) were found in each fraction. The M + D fraction RNA was labeled more by a pulse label. Incorporation of uracil into the D fraction continued only as long as the uptake of exogenous uracil, suggesting that this was a major primary site of RNA synthesis. From pulse-labeled cells, each fraction contained precursor rRNA, and there was a 10S RNA in the M fraction. Ninety per cent of the ribosomal subunits and the ribosomal precursor particles, 26 and 43S, were in the S fraction. Precursor RNA (17S) was found in the 26S precursor particles. The D fraction contained 38% of the polysomes (this does not consider polysomes, if any, of the M fraction) which were labeled four times as much as the supernatant polysomes by a 1-min pulse of uracil. These results are interpreted to mean that new RNA is associated with a cytoplasmic membrane-RNA polymerase-DNA complex.

Full text

PDF
1294

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adesnik M., Levinthal C. RNA metabolism in T4-infected Escherichia coli. J Mol Biol. 1970 Mar 14;48(2):187–208. doi: 10.1016/0022-2836(70)90156-7. [DOI] [PubMed] [Google Scholar]
  2. Bulova S. I., Burka E. R. Biosynthesis of nonglobin protein by membrane-bound ribosomes in reticulocytes. J Biol Chem. 1970 Oct 10;245(19):4907–4912. [PubMed] [Google Scholar]
  3. CHAMBERLIN M., BERG P. Deoxyribo ucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15;48:81–94. doi: 10.1073/pnas.48.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cundliffe E. Intracellular distribution of ribosomes and polyribosomes in Bacillus megaterium. J Mol Biol. 1970 Sep 28;52(3):467–481. doi: 10.1016/0022-2836(70)90413-4. [DOI] [PubMed] [Google Scholar]
  5. Dahlberg A. E., Dingman C. W., Peacock A. C. Electrophoretic characterization of bacterial polyribosomes in agarose-acrylamide composite gels. J Mol Biol. 1969 Apr 14;41(1):139–147. doi: 10.1016/0022-2836(69)90131-4. [DOI] [PubMed] [Google Scholar]
  6. Di Girolamo M., Hinckley E., Busiello E. Localization of robosome precursors in Escherichia coli. Biochim Biophys Acta. 1968 Dec 17;169(2):387–397. doi: 10.1016/0005-2787(68)90047-6. [DOI] [PubMed] [Google Scholar]
  7. Fairbanks G., Jr, Levinthal C., Reeder R. H. Analysis of C14-labeled proteins by disc electrophoresis. Biochem Biophys Res Commun. 1965 Aug 16;20(4):393–399. doi: 10.1016/0006-291x(65)90589-9. [DOI] [PubMed] [Google Scholar]
  8. Fuchs E., Hanawalt P. Isolation and characterization of the DNA replication complex from Escherichia coli. J Mol Biol. 1970 Sep 14;52(2):301–322. doi: 10.1016/0022-2836(70)90032-x. [DOI] [PubMed] [Google Scholar]
  9. Gesteland R. F. Isolation and characterization of ribonuclease I mutants of Escherichia coli. J Mol Biol. 1966 Mar;16(1):67–84. doi: 10.1016/s0022-2836(66)80263-2. [DOI] [PubMed] [Google Scholar]
  10. Haywood A. M. Cellular site of Escherichia coli ribosomal RNA synthesis. Proc Natl Acad Sci U S A. 1971 Feb;68(2):435–439. doi: 10.1073/pnas.68.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KONO M., OSAWA S. INTERMEDIARY STEPS OF RIBOSOME FORMATION IN ESCHERICHIA COLI. Biochim Biophys Acta. 1964 Jun 22;87:326–334. doi: 10.1016/0926-6550(64)90228-2. [DOI] [PubMed] [Google Scholar]
  12. Mangiarotti G., Apirion D., Schlessinger D., Silengo L. Biosynthetic precursors of 30S and 50S ribosomal particles in Escherichia coli. Biochemistry. 1968 Jan;7(1):456–472. doi: 10.1021/bi00841a058. [DOI] [PubMed] [Google Scholar]
  13. McCarthy B. J., Britten R. J. The Synthesis of Ribosomes in E. coli: I. The Incorporation of C-Uracil into the Metabolic Pool and RNA. Biophys J. 1962 Jan;2(1):35–47. doi: 10.1016/s0006-3495(62)86839-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Patterson D., Weinstein M., Nixon R., Gillespie D. Interaction of ribosomes and the cell envelope of Escherichia coli mediated by lysozyme. J Bacteriol. 1970 Feb;101(2):584–591. doi: 10.1128/jb.101.2.584-591.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  16. Pettijohn D. E., Clarkson K., Kossman C. R., Stonington O. G. Synthesis of ribosomal RNA on a protein-DNA complex isolated from bacteria: a comparison of ribosomal RNA synthesis in vitro and in vivo. J Mol Biol. 1970 Sep 14;52(2):281–300. doi: 10.1016/0022-2836(70)90031-8. [DOI] [PubMed] [Google Scholar]
  17. Phillips L. A., Hotham-Iglewski B., Franklin R. M. Polyribosomes of Escherichia coli. I. Effects of monovalent cations on the distribution of polysomes, ribosomes and ribosomal subunits. J Mol Biol. 1969 Mar 14;40(2):279–288. doi: 10.1016/0022-2836(69)90475-6. [DOI] [PubMed] [Google Scholar]
  18. Rouvière J., Lederberg S., Granboulan P., Gros F. Structural sites of RNA synthesis in Escherichia coli. J Mol Biol. 1969 Dec 28;46(3):413–430. doi: 10.1016/0022-2836(69)90185-5. [DOI] [PubMed] [Google Scholar]
  19. Ryter A. Association of the nucleus and the membrane of bacteria: a morphological study. Bacteriol Rev. 1968 Mar;32(1):39–54. doi: 10.1128/br.32.1.39-54.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SCHLESSINGER D. PROTEIN SYNTHESIS BY POLYRIBOSOMES ON PROTOPLAST MEMBRANES OF B. MEGATERIUM. J Mol Biol. 1963 Nov;7:569–582. doi: 10.1016/s0022-2836(63)80103-5. [DOI] [PubMed] [Google Scholar]
  21. Takagi M., Tanaka T., Ogata K. Functional differences in protein synthesis between free and bound polysomes of rat liver. Biochim Biophys Acta. 1970 Sep 17;217(1):148–158. doi: 10.1016/0005-2787(70)90131-0. [DOI] [PubMed] [Google Scholar]
  22. Traub P., Nomura M. Structure and function of Escherichia coli ribosomes. VI. Mechanism of assembly of 30 s ribosomes studied in vitro. J Mol Biol. 1969 Mar 28;40(3):391–413. doi: 10.1016/0022-2836(69)90161-2. [DOI] [PubMed] [Google Scholar]
  23. Tremblay G. Y., Daniels M. J., Schaechter M. Isolation of a cell membrane-DNA-nascent RNA complex from bacteria. J Mol Biol. 1969 Feb 28;40(1):65–76. doi: 10.1016/0022-2836(69)90296-4. [DOI] [PubMed] [Google Scholar]
  24. Varricchio F., Monier R. Ribosome patterns in Escherichia coli growing at various rates. J Bacteriol. 1971 Oct;108(1):105–110. doi: 10.1128/jb.108.1.105-110.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Varrichio F. Polysomes patterns in E. coli and K12 at various growth rates. Bull Soc Chim Biol (Paris) 1969;51(10):1547–1548. [PubMed] [Google Scholar]
  26. YUDKIN M. D., DAVIS B. NATURE OF THE RNA ASSOCIATED WITH THE PROTOPLAST MEMBRANE OF BACILLUS MEGATERIUM. J Mol Biol. 1965 May;12:193–204. doi: 10.1016/s0022-2836(65)80293-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES