Abstract
This study is concerned with the isolation and characterization of the enzyme, S-adenosylmethionine:ribosomal ribonucleic acid-adenine (N6−) methyl-transferase [rRNA-adenine (N6-) methylase] of Escherichia coli strain B, which is responsible for the formation of N6-methyladenine moieties in ribosomal ribonucleic acids (rRNA). A 1,500-fold purified preparation of the species-specific methyltransferase methylates a limited number of adenine moieties in heterologous rRNA (Micrococcus lysodeikticus and Bacillus subtilis) and methyl-deficient homologous rRNA. The site recognition mechanism does not require intact 16 or 23S rRNA. The enzyme does not utilize transfer ribonucleic acid as a methyl acceptor nor does it synthesize 2-methyladenine or N6-dimethyladenine moieties. Mg2+, spermine, K+, and Na+ increase the reaction rate but not the extent of methylation; elevated concentrations of the cations inhibit markedly. The purified preparations utilize 9-β-ribosyl-2,6-diaminopurine (DAPR) as a methyl acceptor with the synthesis of 9-β-ribosyl-6-amino-2-methylaminopurine. A comparison of the two activities demonstrated that one methyltransferase is responsible for the methylation of both DAPR and rRNA. This property provides a sensitive assay procedure unaffected by ribonucleases and independent of any specificity exhibited by rRNA methyl acceptors.
Full text
PDF![81](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db63/247381/9a18b17129ff/jbacter00360-0099.png)
![82](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db63/247381/f320ae3accac/jbacter00360-0100.png)
![83](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db63/247381/38f23750256b/jbacter00360-0101.png)
![84](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db63/247381/41aef7a07edd/jbacter00360-0102.png)
![85](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db63/247381/ee21f52a4088/jbacter00360-0103.png)
![86](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db63/247381/e9d9aa1705dc/jbacter00360-0104.png)
![87](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db63/247381/5a873c5ac54f/jbacter00360-0105.png)
![88](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db63/247381/e186d31e83df/jbacter00360-0106.png)
![89](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db63/247381/3bee2f869b1c/jbacter00360-0107.png)
![90](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db63/247381/93371d929ef3/jbacter00360-0108.png)
![91](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db63/247381/60e7b86ed9b7/jbacter00360-0109.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- COHEN S. S., ARBOGAST R. Chemical studies in host-virus interactions; a comparison of some properties of three mutant pairs of bacterial viruses, T2r and T2r, T4r and T4r, T6r and T6r. J Exp Med. 1950 Jun 1;91(6):619–636. doi: 10.1084/jem.91.6.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi Y. S., Carr C. W. Ion-binding studies of ribonucleic acid and Escherichia coli ribosomes. J Mol Biol. 1967 Apr 28;25(2):331–345. doi: 10.1016/0022-2836(67)90145-3. [DOI] [PubMed] [Google Scholar]
- Fellner P., Sanger F. Sequence analysis of specific areas of the 16S and 23S ribosomal RNAs. Nature. 1968 Jul 20;219(5151):236–238. doi: 10.1038/219236a0. [DOI] [PubMed] [Google Scholar]
- GORDON J., BOMAN H. G. STUDIES ON MICROBIAL RNA.II. TRANSFER OF METHYL GROUPS FROM METHIONINE TO THE RNA OF A RIBONUCLEOPROTEIN PARTICLE. J Mol Biol. 1964 Sep;9:638–653. doi: 10.1016/s0022-2836(64)80172-8. [DOI] [PubMed] [Google Scholar]
- HJERTEN S., LEVIN O., TISELIUS A. Protein chromatography on calcium phosphate columns. Arch Biochem Biophys. 1956 Nov;65(1):132–155. doi: 10.1016/0003-9861(56)90183-7. [DOI] [PubMed] [Google Scholar]
- HURWITZ J., ANDERS M., GOLD M., SMITH I. THE ENZYMATIC METHYLATION OF RIBONUCLEIC ACID AND DEOXYRIBONUCLEIC ACID. VII. THE METHYLATION OF RIBONUCLEIC ACID. J Biol Chem. 1965 Mar;240:1256–1266. [PubMed] [Google Scholar]
- HURWITZ J., GOLD M., ANDERS M. THE ENZYMATIC METHYLATION OF RIBONUCLEIC ACID AND DEOXYRIBONUCLEIC ACID. 3. PURIFICATION OF SOLUBLE RIBONUCLEIC ACID-METHYLATING ENZYMES. J Biol Chem. 1964 Oct;239:3462–3473. [PubMed] [Google Scholar]
- Isaksson L. A., Phillips J. H. Studies on microbial RNA. V. A comparison of the in vivo methylated components of ribosomal RNA from Escherichia coli and Saccharomyces cerevisiae. Biochim Biophys Acta. 1968 Jan 29;155(1):63–71. [PubMed] [Google Scholar]
- Leboy P. S. Stimulation of soluble ribonucleic acid methylase activity by polyamines. Biochemistry. 1970 Mar 31;9(7):1577–1584. doi: 10.1021/bi00809a016. [DOI] [PubMed] [Google Scholar]
- MIDGLEY J. E. EFFECTS OF DIFFERENT EXTRACTION PROCEDURES ON THE MOLECULAR CHARACTERISTICS OF BACTERIAL RIBOSOMAL RIBONUCLEIC ACID. Biochim Biophys Acta. 1965 Feb 8;95:232–243. doi: 10.1016/0005-2787(65)90488-0. [DOI] [PubMed] [Google Scholar]
- McIlreavy D. J., Midgley J. E. The chemical structure of bacterial ribosomal RNA. I. Terminal nucleotide sequences of Escherichia coli ribosomal RNA. Biochim Biophys Acta. 1967 Jun 20;142(1):47–64. doi: 10.1016/0005-2787(67)90514-x. [DOI] [PubMed] [Google Scholar]
- NEU H. C., HEPPEL L. A. SOME OBSERVATIONS ON THE "LATENT" RIBONUCLEASE OF ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1964 Jun;51:1267–1274. doi: 10.1073/pnas.51.6.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichols J. L., Lane B. G. In vitro O2'-methylation of sugars in E. coli RNA. II. Methylation of ribosomal and transfer RNA by homologous methylases in crude cell-free extracts and particulate suspensions from a relaxed mutant of E. coli. Can J Biochem. 1968 Dec;46(12):1487–1495. doi: 10.1139/o68-222. [DOI] [PubMed] [Google Scholar]
- Pegg A. E. The effects of diamines and polyamines on enzymic methylation of nucleic acid. Biochim Biophys Acta. 1971 Apr 8;232(4):630–642. doi: 10.1016/0005-2787(71)90755-6. [DOI] [PubMed] [Google Scholar]
- REMY C. N. Metabolism of 2,6-diaminopurine: S-adenosylmethionine as methyl donor for 2-methylamino-6-aminopurine synthesis. J Biol Chem. 1959 Jun;234(6):1485–1491. [PubMed] [Google Scholar]
- REMY C. N., SMITH M. S. Metabolism of 2, 6-diaminopurine; conversion to 5'-phosphoribosyl-2-methylamino-beta-aminopurine by enzymes of Escherichia coli. J Biol Chem. 1957 Sep;228(1):325–338. [PubMed] [Google Scholar]
- Remy C. N. Ribonucleotides and ribonucleosides as methyl acceptors for S-adenosylmethionine: (amino- and thio-)purine methyl-transferases. Incorporation of 6-amino-2-methylaminopurine into ribonucleic acids. Biochim Biophys Acta. 1967 Apr 18;138(2):258–275. [PubMed] [Google Scholar]
- SUZUKI H., HAYASHI Y. THE FORMATION OF "RIBOSOMAL RNA" IN ESCHERICHIA COLI DURING RECOVERY FROM MAGNESIUM STARVATION. Biochim Biophys Acta. 1964 Aug 12;87:610–620. doi: 10.1016/0926-6550(64)90279-8. [DOI] [PubMed] [Google Scholar]
- Zimmerman E. F. Secondary methylation of ribosomal ribonucleic acid in HeLa cells. Biochemistry. 1968 Sep;7(9):3156–3164. doi: 10.1021/bi00849a019. [DOI] [PubMed] [Google Scholar]